

c, Medium Publishing Ltd.,
St. Helier, Jersey, C.I.

Published under licence
by The Tiny Publishing Company Ltd.,
PO Box 120, Haywards Heath,
West Sussex, RH16 2TG

ISBN 0 907909 02 7

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying or otherwise, without the prior permission of Medium Publishing Ltd.

To Woodstock
and all who sailed in her 1979-1981

Printed and bound in Great Britain
by Billing and Sons Limited
Worcester

Preface

I believe that this book fills a need for a serious but friendly learning aid for people
who wish to master computer programming in BASIC and are lucky enough to have
access to a DRAGON 32 Computer. This new machine is very generous with its
memory and offers outstanding features at an affordable price. I think that my book
offers a 'structured' introduction to the DRAGON 32 and also gives you lots and lots
of programs to help you learn. In fact when I sat down to compile the cassette tape
that you can get to go with the book, I was staggered to find that I had to put 95
programs on it. That's got to be pretty good value also, and you can order it - see
the title page for details. I have also tried to make my book a good reference guide.

I wrote this book in Verbier, Switzerland while I was laid up with numerous injuries
and the rest of my family skied. I have an optimistic theory that behind every
misfortune lurks a hidden opportunity, and I hope you like the results. Charlotte
Crewe typed the manuscript for me, and Malcolm Clarke exhausted the North Sea's
reserves of midnight oil putting it all into its final form. Thanks, kids.

Bill Tidy is the worlds greatest illustrator, and has produced some side splitting
observations which do so much to enliven the text. Once again, thank you Bill Tidy.

And so Dear Reader, over to you.

Contents

One -WELCOME I

Two - FIRST THINGS FIRST 3

Three-THE THIRD R IS

Four -TALKING TO BASIC 21

Five - OVER AND OVER AND OVER AGAIN 29

Six - DECISIONS, DECISIONS 35

Seven - SOME FUNCTIONS 42

Eight - ROUND AND ROUND WE GO 49

Nine -GET IT TAPED 58

Ten -SOUNDS INTERESTING 62

Eleven -A PICTURE IS WORTH A THOUSAND WHAT? 71

Twelve -YET MORE COLORFUL 77

Thirteen - TWO SCREENS FOR THE PRICE OF TWO 88

Fourteen - LINES AND CIRCLES 96

Fifteen - GET OUT YOUR PAINT BRUSH 105

Sixteen - PURELY BY CHANCE 112

Seventeen - MAKE A LIST 117

Eighteen -SORT IT OUT 125

Nineteen -ANYONE FOR EINSTEIN7 128

Twenty - INVENT SOME FUNCTIONS 132

Twenty One - SUBROUTINES 138

Twenty Two - QUITE IN CHARACTER 141

Twenty Three -HIGHLY STRUNG 151

Twenty Four -TURN THE TABLES 165

APPENDIX - A SUMMARY OF EXTENDED COLOUR BASIC 173

INDEX - 187

Know your DRAGON

One

WELCOME

1 More than just a toy

All around us the computer revolution is taking place. It is the most important social
and cultural change since the industrial revolution 150 years ago. Some people think
that this revolution is taking mankind into a new historical age. It all began about 40
years ago with bulky, expensive monster computers that could do very little compared
to modern machines. Since then the size and cost of computers has been falling faster
and faster, recently because of the silicon chip which is at the heart of today's
computers. The DRAGON 32 is a real computer which is capable of all the tasks
that bigger, more expensive machines used to do. It is one of the very first real
computers that most households can afford. Very soon the ability to use and program
a computer is going to be a basic skill as important as reading and writing. If you
have a DRAGON, you're a kind of pioneer; you and your family have a great
educational opportunity.

It would be a great pity to miss out on this. It is all too easy to buy a DRAGON, play
with it for a while using a few programs or games that someone else has written, and
then let the whole thing be discarded like some forgotten toy. The DRAGON is not a
toy, it is a real computer. Since computer skills are already in great demand, you owe
it to yourself to make the most of it. This book is intended to help unleash the
computer experts hiding inside re'al people, by helping them learn to program a real
computer (the DRAGON) using a real programming languase (BASIC).

Welcome

2 What's so special about computers?

Nothing much. A computer is a machine that can do a few quite ordinary things, but
it is fast and does not make mistakes. It does arithmetic, and always gets the answers
right. It remembers things perfectly, and this means that it can remember the orders
you give it and repeat them perfectly forever, or at least until you stop it. It can
compare things and decide what to do as a result. These are very simple things. All
the fuss about computers is because they are new. There is nothing difficult about
them, only different.

3 What is BASIC?

Computers obey instructions. A computer program is a list of instructions gfven to a
computer. These instructions are given in a language that people can understand, but
which is adapted to the requirements of computers. Almost anyone can learn to
program a computer, and BASIC is an excellent language for this purpose. The word
BASIC stands for 'Beginners All-purpose Symbolic Instruction Code' - which means
that it was originally intended for learners. It is a simple, even friendly language as
languages go, and this is a good thing for you and for the people who make computers
because BASIC goes well with small machines. Because of the rapid growth of
'microcomputers' like the DRAGON, it has become a very important computer
language.

4 This book is for you

This book is intended to help you learn. It is not a library of programs, either useful
or useless. I want to show you how easy it is to do your own BASIC programming,
and to help you teach yourself. I won't deny that there are a few hurdles along the
way, but together we can take them in our stride. All you need is your DRAGON
computer. You don't need a cassette unit, although round about Chapter 9 you would
begin to find one useful for saving programs. To make the typing easier, a cassette is
available with all the programs from this book that are 8 lines or longer. Although I
try not to write very long programs, some of my most entertaining and informative
ones are long enough that you probably would not enjoy typing them. If you can't get
the cassette from your DRAGON dealer or bookshop, you can order it. Details are
given on the title page at the beginning of the book.

You already know how to connect the DRAGON to your television and get it running.
Probably you have run a few programs on it - but this is not essential. All you need
now is to start on the next page and follow it through. When you reach the end you
will know all about BASIC as it applies to the DRAGON 32 Computer without
extras. Good luck!

Know your DRAGON

Two ?�
(i

l
�/,

FIRST THIN GS "1 KEYBOARD

FIRST ®@RND

1 A real liltle program

Let's start by trying to be useful. Here in Switzerland the cuckoo clocks are famous.
You and Sonia went to the local tick tock shop to buy some for your ranch. You
actually bought 23, but 9 of them kept poor time and so you took those back. On the
second trip you got a bit carried away and came back with 17 new ones.

How many do you have now? Of course you could work this out yourself, but here is
a little BASIC program on two lines that you could use to make your DRAGON do
the hard arithmetic for you:

10 PHINT 23-9+17
20 ENO

From these small beginnings great programmers grow. You and the computer have to
understand each other, and that is the purpose of the BASIC language. The great
thing about BASIC compared to other languages is that you need only a few facts to
start using it.

In BASIC you write a series of instructions telling the DRAGON what to do, and in
what order. The one above tells it first of all to work out and 'print' the sum 23-
9 + 17 and secondly to stop.

You can see that each of the lines begins with a line number;

10 PlUNT 23-9+17 is line number 10

is line number 20

The line numbers tell you and the computer in what order to obey the instructions
given by the program. Therefore every line of a BASIC program has to begin with a

First things first

line number.

Each numbered line of a BASIC program is called a statement. There are two
statements in this simple example, the PRINT statement and the END statement.
The PRINT statement asks the computer to work out the sum 23 - 9 + 17 and print
the answer. The END statement indicates that the program is finished. On the
DRAGON, the END statement is not essential (on some computers every program
must end with an END, but not on the DRAGON).

2 Take this, DRAGON!

To use a computer program, you first have to get it into the computer. This is what
the keyboard is all about. It is laid out very much like a typewriter, but some of the
special symbols such as '+' are not where a typist would expect them and there are
some extra keys. There is a special key called ENTER near the right hand end of the
keyboard. This is a very important key as you are about to discover.

All you have to do to get the program into the computer is type it, beginning each line
with its line number and ending each line with the ENTER key. The number of blank
spaces inserted between things (or left out) during typing is unimportant. For
example,

1,2! PRINT 2 + 3

and 10 PR INT 2+3

mean the same thing.

and 10PRINT2+3

The order in which lines are entered is not important either, because the line numbers
say what the real order should be. It is usual to separate line numbers by 10, since a
programmer may later wish to insert extra lines, although any separation is allowed.

EXERCISE:
Type the litlle program into your DRAGON. Be careful to begin each
line with the line number. At the end of each line type ENTER. If you
make a real mess of it, switch the computer off and on again and start
over.

3 Let's look - the command LIST

It is very likely that you will make mistakes when you type BASIC programs at the
keyboard. It is important to be able to examine a program as the �omputer sees it,
because it is not always all there on the screen for you to look at. So we should get
used to using the LIST command right from the beginning. With it, the DRAGON
can be asked to display the latest version of your program.

Know your DRAGON

EXERCISE:
Type in LIST and push ENTER to obtain a listing of the program.

How did the computer know that LIST was a command? Simple: statements of a
BASIC program always begin with a line number. Anything that does not begin with
a number is a command. If you type in a statement of BASIC and forget the line
number, your DRAGON will think it is a command.

Actually, there is a bit more to the LIST com'mand, which you won't find useful just
yet. You can list any part of a program. When you need this, look it up in the
Appendix.

4 Now correct our errors - line replacement

Because everyone will make typing errors, it is necessary to be able to correct them.
In BASIC it is always possible to change lines, insert new lines, and delete unwanted
ones. This is easy because al! lines of a BASIC program begin with line numbers, and
whenever a new line is typed it becomes part of the program. Here's how:

(i) To replace or correct a line: just type it again and push ENTER.

EXAMPLE:
Your program is

10 PKONG 23-9+17
20 I::ND

and you type in

10 PHINT 23-9+17

The program is now correct, and is

121 PRINT 23-9+17
20 END

which you can check by the LIST command.

First things first

and push ENTER

(ii) To insert a new line: type the new line and give it a line number that gets
it in the right place. As an example, some new lines could be added to the
same little program.

EXAMPLE:
With the same program already in the computer, you type

14 PRIN'r 64+5
16 PRINT 73-2

and the program then reads

121 PRINT 23-9+17
14 PRINT 64+5
16 PRrnT 73-2
20 E:ND

The DRAGON has looked at the line numbers and put the new
lines in the correct place. This is why the original line numbers
were spaced by 10. This is also why the lines of the program could
have been typed in any order. The DRAGON will arrange your
program by its line numbers.

(iii) To get rid of a line: type in only the line number and push ENTER.

EXAMPLE:
To delete those extra lines again, type

14 Uust the line number and ENTER)
16 (ditto)

The program again reads

10 PRINT 23-9+1 7
20 END

Know your DRAGON

This method of correcting a program is called 'line editing'. You can also edit on the
screen as will be described soon.

EXERCISE:
Experiment with the line editing facilities. Be sure that you know how to
add, change, and delete lines. You can check out each change you have
made with the LIST command. finally put the program back to its given
form and list it to be sure.

5 All systems go - the command RUN

I hope you are patient enough to have gone through all of this very carefully. If so,
you have made a good start. But I expect you and Sonia are anxiously waiting for the
answer.

So far we have created a little program and learned to list and edit it. Now we want
to try it. At last! The command RUN launches your program. When the RUN
command is given, the DRAGON begins to obey the instructions given by the
program.

Once your computer has taken over it is not possible to edit the program or use other
commands until it is finished. The little example won't hold you up for too long! It
will give up at the END statement. If you have made an error in the grammar of the
program, the DRAGON will tell you by saying

?SN ERROR IN 10

if the error is in line number 10. SN stands for 'syntax' which is just a difficult word
for 'grammar'.

EXERCISE:
Type in the command RUN. If it doesn't work it is not typed correctly.
Fix it if that happens. Where are the answers printed. Isn't your ranch
going to be a bit noisy particularly at noon?

6 Screen editing

While you have been using your DRAGON, you will have noticed a small rectangle
on your screen. It always seems to be just to the right of whatever you have just typed
or on top of the thing you are about to type. This is called the 'cursor'. This can do
two useful things for you while you are entering a computer program. Everyone
makes mistakes in typing, and very often you will spot an error just after you make it.
It is possible to move the cursor backwards in the line that you are typing and this
helps you to correct mistakes. To move it backwards, you use the 'back arrow" or
key.

First things first

EXAMPLE:
What you really want is

10 PRINT 2+2

but you notice that you have just typed

10 PROMY.

with the cursor just to the right of the Y. Press-three times and you will
wipe out the three letters that are wrong. Then carry on typing to get it
right. Try this.

You may have made such a mess of a line that you want to chuck it away
altogether before you reach the end of it. You could ENTER it and then
type it again. Or you could hold down the SHIFT key and press-: This
will throw away the line.

EXAMPLE:
You have typed

10 SPRONG.

and the cursor is still next to the G because you have not pressed
ENTER. Hold down SHIFT and press-: Magic! Try this.

7 A Very Flashy Editor

Your clever DRAGON has an additional editing facility which lets you change,
delete, and insert characters in a program that already exists.

(i) Getting the Editor

Suppose you have a program

10 PRAi'ilG 23-9+17
20 EGG

This isn't going to work too well if you try to RUN it. Let's edit line 10.
To do that, type in EDIT IO and press ENTER (of course) The computer
will display line 10 on the screen and repeat the line number underneath,
like this:

10 PRANG 23-9+17
10 .

Know your DRAGON

Now type a series of spaces. Whoops! Line I 0 is copied one character at a time.
What you are doing is editing line 10 without changing anything. When you get to
the end, it won't let you go on until you press ENTER. You could have pressed
ENTER earlier, while in the middle of the line. Again, nothing would have changed.

So try this: get line 10 with the EDIT command, space to the middle of it and press
ENTER.

(ii) Changing some characters - nCxxx

In line 10 we really want to change 'ANG' to 'INT'. To do this, get line
10 on the screen with

EDIT 10

and space the cursor until it's under the A:

10 PRANG 23-9+17
10 PR.

Now type the characters '3CINT'. Aha! The 'edit command' 3C tells the
editor that you want to change 3 characters, and 'INT' are the three
replacement characters. Try it. After you have changed the characters,
press ENTER. LIST the program to make sure. Now change EGG to
END.

So now you know that under the editor, the nC command will change n
characters - n is a number. And there's more!

(iii) Delete some characters - nD

With the same program, you could put in

EDIT 10

again, and get

10 PRINT 23 -9+17
10 .

on the screen - at least you would if you had used the character change
command above. Now we want to remove the term-9 just for fun.
Space along until the cursor is under the minus sign:

10 PRINT 2 3-9+17
10 PIUi<T 23.

10 First things first

And type 2D. That deletes 2 characters. You won't see anything happen until you
space along a bit, or press ENTER. Wow! So now you also know that the nD edit
command will delete n characters. What more could you ask? Well, read on.

(iv) Insert something � I

If you did the last section, the program is now:

10 PRINT 23+1 7
20 END

Now let's put the - 9 term back into line 10. Type

EDIT 10

and as usual you will see

10 PRii�T 23+17
10 .

Space along until the cursor is under the + sign:

10 PRINT 23+ 17
10 PRINT 23.

Now type the letter I. Nothing will happen on the screen, but anything
else you now type will be inserted before the + sign. So all you want to
do is type-9 and press ENTER. Fantastic! The I command starts
inserting. Press ENTER when youv'e finished inserting, or if you want to
carry on editing the same line press SHIFT and 1 as explained in (x) a bit
later. These are the basic essentials, but there are some more editing
commands that can sometimes be convenient. If you find that this is
getting too complicated, come back to it later.

(v) Splice something on the end - X

Type in EDIT 20, and you see

Now type in X, meaning 'extend'. The cursor jumps to the end of line 20
and an'ything else you now type is grafted on to the end of line 20. Make
it say

20 END OF THE WORLD

Know your DRAGON

If you're not supersititious, try running the program:

10 PRINT 2 3 -9+17
20 END OF THE WORLD

Did the world end'? Computers can't do every thing. Fortunately.

(vi) Another insertion - H

The H command lets you delete unwanted things from the end of a line
and splice new things on in their place. You can change

20 END OF THE WORLD

to

20 END OF THE LINE

as follows: First type in

EDIT 20

and you see:

20 END OF THE WORLD
20 a

Space along until the cursor is under the W in WORLD:

20 END OF THE WORLD
20 END OF THE

Now type the letter H and the word LINE. Press ENTER and it's done.
This can be useful.

You can also delete nonsense from the end of a line this way. To correct
line 20, type

and get

EDIT 20

20 END OF THE LINE
20 a

I I

12 First things first

Now space along until you have

20 END OF THE LINE
20 END

and type only H and press ENTER. You have ripped the rubbish off the end of the
line - you could have inserted something but you haven't bothered.

(vii) Searching along - nSx

When you are editing a line you can ask the DRAGON to scan along the
line looking for the nth occurrence of a particular character. Suppose you
enter

10 ABABABABAB

and then put in

EDIT 10

which gives on the screen
10 ABABABABAB
10 •

Enter 3S8 and the editor will find the third B along from where the
cursor is now:

10 ABABABABAB
10 ABABAII

and you can now do anything you want with one of the other commands.

(viii) What have I done? - L

In the middle of a complicated editing operation, you may want to see
exactly what you've got. The L command makes the computer display
your line again and you can carry on editing it. If you have, as above

10 ABABABABAB
10 ABABAII

you can enter, say 3DL and you will see:

10 ABABABABAB
10 ABABAAB
10 .

you have taken three letters out of line I O and are still editing it.

Know your DRAGON

(ix) Zip the cursor around in the line

With the cursor in the middle of a line, you can zap it back and forth.
Consider this fairly long line:

10 THIS IS A FAIRLY LONG LINE

Put in EDIT 10 and get the cursor under the F of FAIRLY by either
spacing or !SF:

10 THIS IS A FAIRLY LONG LINE
10 THIS IS A .

Now put in 5 and SPACE. Youch! You have

10 THIS IS A FAIRLY LONG LINE
10 THIS IS A FAIRr.11

Because you zapped the cursor along by 5 spaces. Now enter I 0 ---:
Zounds ! You have zipped i t back I 0 spaces.

10 THIS IS A FAIRLY LONG LINE
10 THIS .

Now try 30 SPACE and 50 What happens?

(x) Escaping from an edit command

Usually you would press ENTER when you are finished with a line.
However, if you are inserting using I and want to stop inserting, you may
find it useful to enter SHIFT and f This enables you to escape from
inserting and carry on editing the same line. For example, edit the line

10 THIS IS A FAIRLY LONG LINE

by entering EDIT 10. Space forward to get the cursor under the F in
FAIRLY:

10 THIS IS A FAIRLY LONG LINE
10 THIS IS A .

Now enter I and type in QUITE with a space after it:

10 THIS IS A FAIRLY LdNG LINE
10 THIS IS A QUITE •

13

14 First things first

To escape from inserting, press SHIFT and l , then enter 12 and SPACE. You
should have

10 THIS IS A FAIRLY LONG LINE
10 THIS IS A QUITE FAIRLY LONG •

As you can see, we have the cursor at the right hand edge of the screen. Don't panic!
Type in I to get you into insertion mode again, and type the word SILLY with a space
after it.

10 THIS IS A FAIRLY LONG LINE
10 THIS IS A QUITE FAIRLY LONG S
ILLY .

Now press ENTER. You can see that the DRAGON doesn't care if you go past the
end of the screen, your line carries on. Neither BASIC nor the editor have any
trouble with lines that 'wrap around' the end of the screen.

EXERCISE:
Use screen editing to practise replacing characters, deleting characters,
and inserting them. This is a very powerful editing facility. Have a bash
at it before going on, but remember that you can always refer back to this
section if you need it.

8 And for your last trick - look in the Appendix

This is a good time to introduce you to the summary of BASIC at the end of this
book. If you ever need reminding of the rules for any part of BASIC, look them up in
the back. Occasionally you will find extra information there. For example, I haven't
told you everything about the UST command! Using it you can LIST any part of a
program. There are also commands for DELeting and RENUMbering the lines of a
program. The editing information is repeated there also. From time to time you will
get cryptic error messages on the screen - like

? SN ERROR IN 10

Look those up in the Appendix also.

Know your DRAGON 15

Three

THE THIRD R

1 It's 'Rithmetic of course

One of the things computers can help us with is arithmetic - they can be made to do
the hard work in adding up our accounts and working out (shudder) our taxes. That
is one reason why many people want to learn BASIC - so they can program these
things themselves. So we need to know what we can expect. It's very easy, actually,
although there's a tittle sting in the tail.

2 Adding and subtracting

In the previous chapter, you and Sonia did a sum:

10 PRINT 2 3 -9+17
20 END

Actually, the DRAGON doesn't need the END statement although it is a good idea to
know about it because some computers demand that BASIC programs must have an
END statement as the last line. You could have only

10 PtUN'r 2 3 -9+17

Numbers like 1, 2, 23, 9, 17, and so on, are called constants. Our program had the
expression 23 -9 + 17 which added and subtracted the constants 23, 9 and 17.
Everyone knows that the order in which you add numbers is unimportant: 5 + I is the
same as I+ 5. This is not true for subtraction, as 5 - 1 is not the same as 1-5.
Therefore the order in which you write numbers and operations like addition and
subtraction is important. In BASIC, operations are done from left to right, just as we
have all learned to do arithmetic. The meaning of

10 PRINT 23-9+17

16 The third R

.is obvious to you, me, and the computer. The symbols + and- also have a meaning
if they come before a number, as in

10 PHINT +99 or 10 PRINT -73

and on the DRAGON you can do something like

10 PRINT 6+-+-5

What does it mean? Try it to make sure.

3 Multiply and divide

In BASIC the symbol * is used for multiplication. This is written between the
numbers to be multiplied. Like addition, multiplication is not order-dependent.

EXAMPLE:
There are 2.204 pounds to the kilogram. How many pounds does a nine
kilogram canary weigh?

This will do it: 10 PRIHT 9 * 2 . 204

Here there are constants with decimal points in them. You can always do
this in BASIC.

Know your DRAGON

EXERCISE:
In 1974, my publisher sold 3 18 copies of my book. For each one I
received a royalty of 0.24 interplanetary credits. How much did I get?
Will I soon be rich?

17

Numbers are divided when the symbol / is used. The order of the numbers does
matter, since

15/l is 5 and l/15 is 0.2

EXAMPLE:
How many kilograms does a nine pound canary weigh? Do this:

10 PRINT 9 / 2 . 204

Do you believe in nine pound canaries?

EXAMPLE:
It's a long long way to San Jose; 434 miles to be exact. At 56 miles per
hour the highway patrol will probably not stop me. How long will it take
to get there? This is it:

10 PRINT 434/56

EXERCISE:
You can do 29.2 miles to the gallon and you have 14 gallons left. Can
you make it to San Jose?

4 Raise a number to a power

There is one more operation in the arithmetic of BASIC, the raising of a number to a
power. The symbol for this is the vertical arrow, 1 .

5 l 3 means 5*5*5 or 125
3 1 5 means 3*3*3*3*3 or 243

There are also fractional powers; for example

2 l0.5 is the square root of 2, or 1.4142 ...

18 The lhird R

EXAMPLE:
You bet one interplanetary credit and throw the dice I 2 times. Each time
you double your money. How much have you won? Ask the computer:

10 PRINT 2 11 2

O n the 13th throw you lose i t all. Tough.

EXERCISE:
As you were leaving old St Ives, you met a man with seven wives. Every
wife had seven brats and every brat had seven cats. Every cat had seven
kits and every kit had seven lives. How many kit's lives were going to St
Ives? The answer is 16807. Can you get it?

5 'Rithmetic stew - expressions

Now is the time to throw all the operations into the pot at once. This has been
delayed because there is a complication.

After a successfol seven-a-side football match, your team is awarded 3 pints of grog
each plus another 11 to share between you. How much grog does each player get?
The computer will tell you:

10 PRINT 3+11/7

Is it really evaluated from left to right? lf so, it would mean

10 PRINT (3+11) /7 with the result 2. You've been cheated!

Or does it mean instead

10 PRINT 3 + (11 / 7) with the result about 4.57?

I think that you can see that the result you want is 4.57. Check that this is what the
DRAGON gives you. You can probably see that expressions are not evaluated from
left to right - it is a bit more complicated.

It is necessary to have an exact set or rules about this arithmetic so that both you and
the computer know what should happen. In BASIC some operations are given a
higher priority than others. The order is:

() things in brackets highest
1 raising to a power

• / multiplication and division
+ - addition and subtraction lowest

Know your DRAGON 19

The computer will always look at an expression and do the things you have put in
brackets first. Of course inside the brackets could be all kinds of things including
more brackets, which have to be done first!

Among the actual arithmetic operations, powers are done first. Then the
multiplications and divisions are done from left to right. Finally, the additions and
subtractions are carried out, again from lef1 to righl. You can always force the
machine to do 1hings in the order you want by using round brackets. If you do this,
the bracke1s must always be in pairs - one right bracket for every left bracket, as

10 PRINT 1+2* (3+4* (5 +6))

You can write a sequence of plus and minus signs, and BASIC will work out what you
want - the expression I + - + -2 is allowed and has the value 3; similarly I +(-2)
i s permitted because anything in brackets i s a self-contained expression and can have
+ or - in front of it. However you cannot write the * or / operations on their own.
Therefore -3 is a correct expression on its own but *3 is not. Similarly 2/*3 is
nonsense.

This business of priority in arithmetic is the sting in the tail I referred to earlier.
People have a tendency to get caught, particularly by division. Notice that

7/3+4 is not 1 and 7/(3+4) is 1.

EXAMPLE:
Stevastian Covett runs the mile in 3 minutes and 40 seconds. What is his
average speed in miles per hour? This is slightly more complicated
because the time is in minutes and seconds. But we can convert this to
hours and get the average speed:

10 PRINT 1 / ((3+40/60) /60)

EXAMPLE:
An Acapulco diver jumped off a cliff and hit the water after 7.72 seconds.
How high was the cliff?

The formula for falling under gravity, ignoring wind resistance, is

distance = _!_ x acceleration x time2

2
We have to use the right units. Working in seconds and metres, the
acceleration under gravity is 9.8 I metres/second/second, and so the
answer is:

10 PRINT 0 . 5 * 9 . 81*7 , 7 2 T 2

D o you see how I managed to square the time?

20

EXERCISE:

The third R

You do this one. Fernando deposited one interplanetary credit with the
Interstellar Bank just over 7 years ago. Four times a year, Interstellar
credit�d him with 4% interest. How much has he now? If you can't do it,
compound interest is used as an example in the next chapter.

6 All this and a calculator loo - direct expressions

This is not part of the normal BASIC language, but many small computers will do it,
including your DRAGON. The difference between a line of a program and a
command is the line number. You know that

10 PRINT 5 (3

is a line of a BASIC program. What happens i f you type just

PRIN'f 5 l 3

Oh dear! I suppose you think I should have told you about this earlier. It turns out
that your DRAGON will obey many statements of BASIC immediately if you type
them in as a command - they call this 'direct mode'. It is useful, but not powerful
because you would have to get your entire program on one line - which in theory you
can - but it gives you no opportunity to correct it. Use it to get quick results, as
from a calculator, but don't use it to do more serious programming.

As a shorthand you don't have to type the word PRINT - you can use a question
mark. Try this:

?2!8

So try this:

10 ?2!8

When you LIST this you will get a big surprise. This i s not a normal BASIC feature,
but a handy little thing that the DRAGON does for you.

So you can actually use your DRAGON like a calculator. The only statements that
are not allowed as direct statements are INPUT, which is introduced in Chapter 4,
and DEF FN from Chapter 20. You know, the first hand-held calculators were nearly
as expensive. And your friendly neighbourhood DRAGON 32 computer can do much,
much more. After all, this is only Chapter 3!

Know your DRAGON 21

Four

TALKING TO BASIC

I Send yourselr a message

By 'talking to BASIC' I do not mean that the machine can literally speak to you, or
you to it - although that isn't so many years off. What I do mean is that you can
easily include messages in your BASIC program that appear on the screen so that
when you run a program, it can tell you what to do. Also. when the program is
running, you can give it values to work on.

The programs of the previous chapter showed their results in a somewhat unhelpful
way. In a complicated program a lot of numbers appearing on the screen with no
explanation could be very confusing. In a PRINT statement, a message can very
easily be displayed on the screen. This greatly improves almost any program.

EXERCISE:
Try this program.

10 PRINT "HELLO YOU"

As can be seen from this example, a message can be produced by a PRINT statement
simply by enclosing it in quotation marks. Be sure to use double quotes as shown.
Whatever you put inside the quotation marks is displayed on the screen when you run
the program. Earlier, you ran programs like

10 PRINT 3+11/7

to help you divide up the grog. The program

10 PRINT "3+11/7 "

is quite different. Try it.

22

EXERCISE:

Talking to BASIC

Now try this one.

10 PRINT "YOUR SHARE" 3+11/7

Can you see what this does?

Normally several items to be printed are separated by commas, as in

10 PRINT "CATCH" , 2*1 1 , 2+2

but it is not necessary to include commas before or after messages in quotation marks.
Here is a longer program which still doesn't do much. This one has two PRINT
statements. You will see when you run this that each PRINT statement starts a new
line on the screen.

10 PRINT "TWO AND TWO"
20 PRINT "ANSWER =" 2+2

2 Inserting remarks - the REM statement

You can include statements in your BASIC programs which help to explain the
meaning of the program to you, but which do not do anything when you run the
program. The REM (for REMark) statements do this. It is always a good idea to use
them, and in complicated programs they are essential.

The REM statement has the form

line number REM any remark or comment

and added to the simple program this could be

10 REM A. DEMONSTRATION
20 PRINT""rwo AND TWO"
30 PRINT" 2+2 =" 2+2

Are we going too fast? Run this program. Be sure you understand the difference
between what a REM statement does and the message facility that goes with the
PRINT statement.

REM statements help to explain programs. If you later add a cassette recorder or
disk unit to your DRAGON, then you will save lots of programs that you have
written. When you later return to them, the REM statements will help you to recall
the details of your program in case you want to change it, or add to it.

Know your DRAGON 23

3 Chucking old programs away - the command NEW

In the previous chapters, you learned how to create and edit programs, and to run
them. Now you are going to want to make new programs that are more than one line
long, and you don't want old programs hanging around to mess them up. There is a
command that throws away your old program and lets you begin a new one. If you
enter the command NEW (and push ENTER of course - you should be used to that
by now) your old program is lost and you can start' a new one. You can also clear the
screen at any time - without losing your program - by pushing the CLEAR key.

Remember that the commands are summarized in the Appendix. So far you can
LIST a program or any part of it. You can RUN a program. You can also DELete
or RENUMber program lines. And now you can create NEW programs.

4 Giving values to a running program - the INPUT statement

You have seen how you can use BASIC to print numbers and messages. It is equally
important to be able to give values to a running BASIC program yourself. This
enables the usefulness of the computer to leap beyond what a mere calculator can do.
In BASIC, a program is written using names for the values to be used, much as in
algebra, and an INPUT statement in the program will ask you for the actual values
when you run the program.

EXAMPLE:
You sell sea shells by the sea shore. Whenever a sea shell is sold you have
to add on 15% sea shore tax (SST) which the SS tax police have ways of
making you collect. So every time you sell a sea shell you ask your
DRAGON how much to charge your customers. The price with the tax
added on is I. 15 times the price before tax. Here is a program:

10 INPUT S
20 PRINT 1 . lS*S

When you run this program, the computer will ask for the price of the sea
shells you are selling. The program calls this S. your DRAGON prompts
you for the value of S by putting a '?' on the screen. When this happens,
you should type in the sea shell price, push ENTER, and the DRAGON
will tell you what the sea shore sea shell selling price is.

EXERCISE:
Run this program. When you are prompted, type in 1 00 and push
RETURN. Did you get the answer 1 1 5? Good. Now every time you
RUN this program it works out the sea shell sea shore selling price for
you.

24 Talking to BASIC

The INPUT statement, introduced here, is one of the two statements of BASIC on the
DRAGON 32 that cannot be used as a 'direct' statement. It can only exist as a
statement with a line number in a program. If you try to use it when you are
pretending that the DRAGON is a calculator in direct mode, you will get the message
'ID ERROR'. If you look at the list of error messages in the Appendix you will see
that it means exactly what would be expected - INPUT cannot be used in direct
mode.

EXAMPLE:
Actualty the sea shore tax program is lousy. Since we know about REM
statements and how to print messages, we can make this a whole lot
better:

10 REM TAX ADDER ONER
20 REM EXPLAIN PROGRAM
30 PRIN'r " HLLLO BOSS, IF YOU ENTER"
4 0 PRINT "THE SEA SHELL PRICE , I ' LL "
50 P!UNT"ADD O N THE S S TAX FOR YOU"
60 INPUT S
70 REM WORK IT OUT
80 PRINT "WITH TAX THAT ' S " l . lS*S

When you type this in, you will see that some lines are a bit too long for the screen.
Just keep typing and see what happens. Don't forget to push ENTER when you get to
the end of the statement. Is your program OK? Will it RUN? From now on we
don't have to be too bothered about the lengths of our BASIC statements.

This is also the first program that is long enough to go on the cassette that you can get
to go with this book. No one minds typing short programs, I hope, but some of the
best ones are longer. It is called '95 Programs from Know your DRAGON'. If your
dealer or bookshop doesn't have it, you can order it. There are details on the title
page at the beginning of the book.

EXAMPLE:
Your two kids have different numbers of marbles (the glass things, not
brains). This is because the big one keeps winning. You're a socialist.
The DRAGON will help you redistribute the wealth. You are going to
tell it how many marbles each of the two has, and your computer is going
to tell you how many they should have. Put another way, it will find the
average of two numbers:

10 RE'.M SOAK THE RICH
20 PlUNT"HOW MANY MARBLES HAS EACH BOY"
30 INPUT X, Y
40 PRINT"RUPERT HAS "X" OLIVER HAS "Y
:,.;0 PRINT"TOTAL MARBLES ="X+Y
60 PRINT "GIVE THEM EACH" (X+Y) /2

Know your DRAGON 25

OK, Solomon. If the total is odd, are you really going to cut one in half?

There is another good thing added to this program at line 40. The program 'echoes'
the input. Do you see why brackets are used in line 60?

EXERCISE:
Run this program several times. The INPUT statement at line 30 will
prompt you with '?'. When you see this, you type in the values for X and
Y with a comma between them and push RETURN. The answer should
then appear on the screen. However, there are several things that you
might do wrong. If you give too many values, that doesn't matler - the
computer takes the first two and says 'EXTRA IGNORED'. But if you
give only one value, the DRAGON will make you give more by
prompting you again - this time with '??'.

You get the message 'REDO' if what you type is not a number. Make
these errors deliberately this time so that you can see what happens.

A good programmer gives a lot of attention to the dialogue between the program and
the person who runs it. The 'personality' of the program depends on the care that has
been taken in making it friendly - this is up to you.

26 Talking to BASIC

5 So now you know about variables in BASIC!

In the previous section, values were given names like S, X and Y. These are
'variables' to which you can give names when you write the program, and set the
values later when you run the program. There are lots of names for ordinary variables
allowed by BASIC. These are the single letters A to Z, any combination of one letter
followed by a number, such as AO, A l , ... , A9, 80, B I , ... , B9, and any combination of
two letters such as XY, BQ, and so on. There are a few names that you cannot use
because they mean something special to BASIC: ON, OR, GO, TO, FN, and IF.

You may notice that the letter O (oh!) and the number O (zero) are easily confused.
This is why the number 0 appears with a line through it on the keyboard, and in all
the programs in this book. On the screen, zero looks narrow and O (oh!) looks square.

6 Anolher way of ghing values to variables - the assignmenl statement

To begin with, we could only do arithmetic with constants in a PRINT statement.
Then we discovered how variables could be used instead, with their values given
manually in response to an INPUT statement. Now we will see that there is a special
statement for giving values to variables - the assignment statement.

Here is an example:

80 TX= l . 1 5

This gives the value I . I 5 to the variable TX, and w e could add this to our tax
collecting program:

80 TX=l . 1 5
9 0 PRINT"WITH TAX THAT ' S " TX*S

An assigment statement has the form:

line number variable name = expression

The expression can be more complicated, for example

80 C2=Cl* (l+I/100) \N

You will wish to know exactly what happens when an assignment statement is obeyed.
First of all, the expression on the right hand side is worked out. The result then
replaces the value of the variable on the left hand side. Because of the way it works, a
statement like

66 I=I+l

Know your DRAGON 27

is not a nonsense statement, but something very useful as we shall see a bit later.

On many computers, the assignment statement includes the word LET, which helps to
make it more self -explanatory:

line number LET variable = expression

such as
44 LET Z=Xf 3

The DRAGON 32 computer will accept the word LET, although it is never necessary
to have it.

EXAMPLE:
Let's convert pounds and ounces to kilograms. The number of pounds in
a kilogram is 2.204. We'll make our program really friendly so that it
introduces itself and explains that it wants to be given pounds and ounces
so that it can convert them to kilograms:

10 REM A PROGRAM WHICH WILL
20 REM CONVER"r POUNDS, OUNCES
30 REM TO SENSIBLE KILOGRAMS
40 REM GREET THE USER WARMLY
50 PRINT "HELLO YOU , I ' M THE"
60 PRINT " FRIENDLY METRIC THING"
70 PRINT"AT YOUR SERVICE"
80 PlUNT " GIVE ME A WEIGH'r IN"
90 PRINT " POUNDS AtlD OUNCES"
100 PRINT"AND I ' LL TELL YOU"
110 PlUNT"WHA'r IT IS IN KILO S "
120 INPUT LB , O Z
130 PRINT" TtlANK Y O U S O MUCH"
1 40 PW=LB+O Z/16
1 50 KG=Pli/2. 204
160 PRINT" 'rHA"r MAKES"KG" KILOS"
170 PRIN·T "IT HAS TERRIFIC TO "
180 PlUNT" SERVE: YOU. PLEASE RUN"
190 PRINT"ME AGAIN ONE DAY"

The program first of all converts the given weight to pounds (there are 16
ounces in a pound):

140 PH=LIHOZ / 1 6

and then works out the result i n kilograms. You could use this program t o
work out how much your canaries weigh. I f you try it, a s you should, you
will find that the 19 lines of this program more than fill the screen. So

28 Talking to BASIC

how can you LIST it? Look in the Appendix, at the LIST command.
You can list whatever bits of it you want.

EXAMPLE:

where

Here is a money program. The computer will tell you how much money
you get back from your investments.

10 RBM COMPOUND INTEREST PROGRAM
20 PHI NT" HOW MUCH DO YOU INVEST"
30 INPUT Cl
40 PRINT"WHAT IS INTBREST RATE"
50 INPU"r I
60 PlUNT" HOW MANY PERIODS"
70 INPUT N
80 C2=C l * (l+I/100) 'N
90 PRINT" RETURN IS "C2

This is based on the formula

r - c (I + i/100)"

c = capital invested
i = interest rate in percent for each investment period
n = number of investment periods, or the number of times the interest
has been compounded
r = the return

EXERCISE:
Using this program, find out the number of periods taken to at least
double an investment at a rate of 8%. Is it worth it with inflation like it
is?

Know your DRAGON

Five

l/

OVER AND OVER (
AND OVER AGAIN 1

I Forever

29

We will see here how to make a program go on and on forever - and we will have to
learn how to stop it!

The GO TO statement is the hero (or villain!) of the piece. This enables you to
change the order in which the statements of a program are obeyed. Normally they are
taken one after another. in the order of their line numbers. However, if you put in a
GO TO statement, it jumps to somewhere else. Try this:

10 HEM CHEEKY PROGRAM
20 PRINT " SO JUST YOU TRY AND"
30 PRINT "MAKE ME STOP " ;
40 Go ·ro 30

Notice the semicolon at the end of line 30. This makes printing continue on on the
same line. You should RUN this program, and when you do you will see that it seems
to go on mocking you forever. This is because the GO TO statement at line 40 sends
you back, to line 30 - again and again and again. Forever. Do not despair - nil
illegitimati carborundum! stop it with the BREAK key. That's better1 If you want it
to resume, type in the command CONT. If you make some changes to the program
between stopping it and trying to CONT. you can't CONT. Try it and see.

So far so good. A repeating program can be stopped by pushing BREAK. What if
there's an INPUT statement? Let's see!

EXAMPLE:
A program in the previous chapter showed you how to add tax on to the
price of sea shells. I'll let you in on a secret - it doesn't have to be sea
shells, it will work for anything. More complicated is the problem of
trying to deduce the price without tax if you know the price with tax.

30 Over and over and over again

Suppose a banana warmer costs 100 interplanetary credits with banana
warmer tax at 15%. What did it cost before tax? If you think the answer
is 85, you're wrong. Here is a program to tell you. Notice that because it
has a GO TO statement in it it will keep on running forever, taking away
banana warmer tax as many times as you want:

10 REM TAX TAKEAWAY
20 PRINT " 'rtIIS PROGRAM TELLS "
30 PRINT "WHAT YOUR BANANA"
40 PRINT "WARMER COST BEFORE"
50 PRINT " B ANANA WARMER TAX"
60 PRINT "WAS ADDED ON. "
70 PRINT " TYPE IN THE PRICE"
80 INPUT 81'1
90 PRINT " I 'r WAS" BW/ 1 . 15
100 PRINT "BEFORE TAX"
110 GO TO 70

Run this. If you type in 115, you should get 100 as the price before tax.
Agreed? So what is the pre·tax price if the taxed price is 1 00? It's not
even close to 851

To stop this, push BREAK just as you did before. Try it.

I think you can see that a GO TO statement looks like this:

line number GO TO another line number

and it forces the program to jump to 'another line number' instead of carrying on in
the normal order of line numbers.

2 Something tricky � self-replacement

Something cool happens if the same variable is used in both sides of a LET statement,
such as

60 CT=CT+l

Here, CT has been used in calculating its own replacement value. You can use this
for counting as in this program:

10 REM LEARN TO COUNT
20 REM SET FIRST VALUE
30 CT=l
40 PRINT CT

50 REM REPLACE IT
60 CT=CT+l
7 0 REM AND GO BACK
80 GO TO 40

Know your DRAGON 31

Notice what is required for counting. First a starting value is set at line 30. Then the
counter CT has one added to it over and over again.

EXERCISE:
Run this program. Remember to push BREAK to stop it.

3 Adding up - your bank account

By using self -replacement, a number of useful things can be done. One of the most
useful is to be able to add things up. To do this you set aside a variable to hold the
sum and give it a starting value. Inside a loop we add to the sum each time around
the loop.

Here is a program for adding up. It prints the count J, and the sum of all the
numbers up to J. An INPUT statement stops it each time around.

EXERCISE:

10 REM COUNT AND SUM
20 REM SET STARTING VALUES
30 J=l
40 S=l
50 PRINT "COUNT IS NOW " J
60 PRil>JT " LATEST SUM I S " S
70 PRINT " PRESS RETURN TO GO ON"
80 INPUT X
90 REM GET NEXT VALUES
100 J=J+l
1 10 S=S+J
120 GO TO 50

You might like t o add t o this program

85 CLS 1

Useful! Remember this for future use. CLS means 'clear the screen' and
I is for green.

EXAMPLE:
The computer can check your latest bank statement. This program asks
you for the starting balance, and then you enter each transaction and get
your new balance. It uses 88 for your bank balance, and TR for each
transaction.

30 PRINT "GIVE STAR'X'ING BALANCE"
40 INPUT 8B
50 PRINT " NOW THE TRANSACTIONS "
60 PRINT "MINUS FOR WITHDRAWLS"

32 Over and m·er and over again

70 PRINT " PLUS FOR DEPOSITS"
80 INPUT TR
90 BB=BB+TR
'100 PRINT "NEW BALANCE IS" BB
1 10 PRINT "NEXT"
120 Go ·ro 80

4 A better class of prompt

You may find it convenient to put a message in the INPUT statement, such as

80 INPUT "NEXT" ; T R

in the bank balance checker. This will include the message 'NEXT' i n your
computer's prompt for the value of TR. This would then make line t 10 unnecessary,
and the prompt would look better because the '?' will appear right after the word
'N EXT'. You can always have one message in an INPUT statement:

line number INPUT message ; variable list

You need the semicolon after the message.

5 Today's new word - recurrence

So what is this thing called recurrence? It is what happens whenever a variable is
used for self-replacement. Therefore both counting and summing make a kind of
recurrence. There are other kinds of recurrence.

For example, suppose an ageing snail is running out of energy so that it goes one
metre today, half a metre tomorrow, a quarter of a metre the next day, and so on. If
the snail lives forever, how far does it get? To work this out you need to do this sum:

1 1 1
1 + � + � + � + • • •

(Do you know what the answer is?) You could write

10 S=l
20 N=0
30 PRINT "LATEST SUM" S

If you want to slow this down, put in

35 INPUT X

40 N=N+l
50 S=S+0 . 5)N
60 GO TO 30

Know your DRAGON 33

so that you get one stop each time you press ENTER. However, if you were clever
you would notice that the bit added on is half the bit added on before, i.e.

10 S=l
20 T=l
30 PRINT "LATEST SUM " s
40 T=T/ 2
50 S=S+T
60 GO TO 30

What we have done is notice a different recurrence which gives each new term by
dividing.

40 T=T/ 2

Do you understand? The second version is clever, but is it any better? Well, it will be
a bit faster because raising to a power is slower than dividing.

EXERCISE:
Run this latest snail program. Evidently the DRAGON thinks that the
snail arrives. This is because eventually the new bit called T gets too
small for it.

Rabbits certainly can breed!

Here is another fascinating recurrence. A long time ago a man nicknamed Fibonacci
(1 202 AD) was interested in population growth. He asked the question 'How many
rabbits would be produced from a single pair in n generations?· He assumed that
every month a pair of rabbits produces another pair, and that rabbits begin to bear
young when they are two mon1hs old. Honi Soit Qui Mai Y Pense! This led to the
famous Fibonacci series. usually expressed as a recurrence:

F n is the number of pairs after n months. We use F 1 = 1 and F2
= I also.

Here is a program to do this:

10 REM RABBITS RAMPA.NT
20 Fl=l
30 F2=1
40 REM MAKE NEXT '"£ERM
50 F=Fl+F2
60 PRINT " BHEED" F

70 INPUT X
80 REM REVISE OLD TERMS
90 Fl=F2
100 F2=F
110 GO TO 50

34 Over and over and over again

When you RUN this program, you breed a new generation of rabbits every time you
push ENTER.

All these fascinating things arise from the ability of a BASIC program to loop back
on itself using the GO TO statement, and from the fact that a variable can be used to
calculate a new value for itself. This is the meaning of recurrence. Do you see what is
done in statements 90 and 100?

If you run this program, you are going to see some large numbers begin to appear
after several generations. Soon, the numbers get too big for to put on the screen.
When this happens, the display will switch to 'scientific notation' in which you see
something like

l . l J4903 17E + 09

This means that the population is now 1.13490317 multiplied by 109. The 'E+09'
means to multiply by 10 raised to the power 9, which is the same as moving the
decimal place 9 places. The answer then is approximately l 134903170 -
approximately because we do not actually know what the last digit is. The computer
doesn't know either, because it can only store nine digits.

If you remove line 70 and let the program run on even further, you will get to a point
where the answer becomes too large for your DRAGON. How large is that? You
can see that it can handle quite an impressive range of numbers.

Know your DRAGON

Six

DECISIONS,
DECISIONS

1 Comparing things - relational expressions

35

I hope that you have found everything that we have done so far to be fairly easy.
Because now is the time to take a bit or a jump. So far it has been easy to follow
programs from line to line because they have either been taken in order or formed a
loop. Now is the time to let a program make a decision.

To do this, a new kind or expression gives us the answer TRUE or FALSE when we
make a comparison. For example, you may have a variable BA which is the balance
or your bank account. You want to know ir you can afford that new interstellar
scooter which costs IO000 credits. The expression

BA> 10000

is either true or false because the symbol > means 'greater than'. You would then
say in a BASIC program something like

70 IF BA> l 0000 THEN 30

which would jump to line 30 i r you have more than enough.

In more general terms, to make a comparison, you use what is called a relational
expression, which is

something compared something
to

or, to be more exact,

arithmetic relational arithmetic
expression operator expression

36 Decisions, decisions

The relational operators that can be used to compare things are:

equal to, i.e. A=B is TRUE if A=B, otherwise FALSE
> greater than, i.e. 10>5 is TRUE
< less than, i.e. 10<5 is FALSE

and the combinations

> = or = > greater than or equal to, i.e. 5> =6 is FALSE
<= or =< less thanor equal to, i.e. 5< =6 is TRUE
<> or >< not equal to, i.e. 5<>5 is FALSE

2 Be decisive - the IF . . . THEN statement

The IF . . . THEN statement uses a relational expression to make a decision about
whether to jump to a chosen line number. This allows programs to decide what to do
nexi. · 11 looks like this:

line number IF relational THEN destination
expression

If the relational expression is TRUE, the program jumps to the destination, which
must be a line number that really exists.

EXAMPLE:
Now we can stop counting whenever we want, as in

10 REM COUNT TO FIVE
20 J=l
30 PRINT J
40 J=J+l
50 IF J<=S THEN 30

Try it. Later on we will rind an even easier way to do this.

EXAMPLE:
It is unhealthy to let the recurrence programs of the previous chapter go
on forever. Here is how to stop the program for doing

I + I + I + I +
2 4 8

when the next term is less than 0.00001 . This is when the snail is within a
whisker of its destination. Change line 60 to

60 IF T > 0 . 00001 THEN 30

Know your DRAGON 37

3 A more powerful IF - lhe IF . . . THEN . . . ELSE stalement

The TRS80 has a more versatile version of the IF . . . THEN statement than most
kinds of BASIC. First of a!l, in the IF . . . THEN form. you can have a statement of
BASIC as the TRUE condition. as in this example:

40 IF B8>=10000 THEN PRINT"YES YOU CAN AFFORD IT"

Furthermore, a program often encounters a situation where it wants to act differently
on TRUE and FALSE conditions. In this case, if what you want to do is simple
enough, you can add an ELSE condition to the IF statement, which is again any
statement of BASIC:

40 IF BB> =l0000 THEN PRINT"YES YOU CAl'l' AFFORD IT"

ELSE PRINT"NO YOU CA!.ii ' T "

I n both cases the I F . . . THEN o r I F . . THEN . . . ELSE statement has t o go entirely
on one line of BASIC. You will find that you get some pretty long lines if you use
1his, but it doesn't matter - a long line of BASIC jus1 continues on several lines on
1he screen until you push ENTER. No problem.

It might be even more useful if you could have several lines of BASIC for 1he TRUE
and FALSE conditions, but you can't. However you can squeeze several statements of
BASIC into either the TRUE or FALSE conditions by using colons. As long as you
keep the entire IF . . THEN . . ELSE on one long line of BASIC, you can have lots
of statements, for example

10 INPUT I
20 IF 1=0 THEN PRINT"TRUE" : PRINT"IT WORKS"

ELSE PRINT"FALSE " : PRINT"BUT IT STILL WORKS"

EXAMPLE:
Those who market toothpaste are very sly. On the supermarket shelf you
might find a tube of CRASP containing 25 grams of blue guck for 1.25
interplanetary credits and next to it a bigger 4 ounce tube selling for 5.49
credits. Which do you buy? There are 28.35 grams in an ounce. The
best value is the one whose price per gram is the lowest.

38

EXERCISE,
Run this program:

Decisions, decisions

10 REM BRUSH DAILY WITH GUCK
20 REM PRICE'· PER GRAM OF SMALL TUBE
30 LET SM,,,l. 25/25

60 REM NOW REPORT ON THE RESULT
70 IF SM<=BG THEN 100

40 REM PRICE PER GRAM OF BIG TUBE
50 LET BG=S .49/ { 4*28 . 3 5)

8 0 PRINT "BUY THE BIG ONE"
90 END
100 PRINT "BUY THE SMALL ONE"

Why do we buy the small one if the costs per gram are the same?
Because more blue guck will stick to the inside of the larger one and be
wasted. If you wanted to take this factor into account properly, you
would have to carry out some experiments.

You will notice when you enter this program that line 70 is too long for
the screen. This doesn't matter. Long lines just carry on, and that applies
to editing as well.

4 More complicated decisions - NOT, AND, OR

This is a feature of BASIC on the DRAGON which not all computers have. You can
use special relational expressions with NOT, AND, OR in them to make more
complex decisions. They are called logical operators. You can have

relational
expression

logical
operator

relational
expression

and again get a result TRUE or FALSE; for example in

30 IF I > l0 OR J < 20 THEN 66

Here is what they mean:

something OR something
is TRUE if either or both of the somethings are TRUE

thingie AND thingie
is TRUE only if both thingies are TRUE

NOT something has the result TRUE
if the something is FALSE and vice versa

If you want to make a really complicated expression, you have to know about the
priority of these operations. Here it is:

AND highest
OR
NOT lowest

and you can use brackets to get what you want.

Know your DRAGON

EXAMPLE:
Your two kids each get an allowance. The eldest has an allowance of A l
per week. The youngest gets A 2 per month - this i s a result o f complex
negotiations. Because there are not four weeks in a month, you think you
might be able to fool them about who gets the most but the DRAGON is
on their side. Here is a program to check that A l *52 is more than
A2* I 2, so that in a year the eldest gets more than the youngest, unless
both are zero. As the kids have learned not to trust you, it also checks
that neither allowance is negative. So what are the rules?

Both A I and A2 must be greater than or equal to zero and A I *52
must be more than A2*12 unless both Al and A2 are zero.

39

40

Here is the program they will use to check up on you:

10 REM DOWN WITH CHEAP DADS
20 PRINT " ENTER Al AND A2"
30 PRIN'l' "WITH BOTH > =0 AND"
40 PRINT "A.1* 5 2 > A2*12 UNLESS"
50 PRINT "SOTH Al ANO A2 ARE 0"
60 INPUT Al , A2

Decisions, decisions

70 IF NOT((Al*52> A2 * 1 2 AND A2 > =0) 0R (Al=0 AND A2=0)) THEN 20
120 PRINT " DAD GO IT RIGHT"

5 Try not to make ugly programs

Look at the IF statement from the above example. It is complicated:

70 IF NOT((Al*52 >A2 * 1 2 AND A2 > =0) 0R (Al=0 AND A2=0)) THEN 20

There are a number of ways of getting the same result. You could have written

70 IF (Al*52>A2*12 AND A2 > =0) OR (Al=0 AND A2=0) 'rHEN 120
80 GO TO 20

Why not? Well, quite honestly to an experienced programmer it is repulsive. If you
write an IF statement followed by a GO TO statement, you are creating an ugly
structure in which the flow lines of your program cross. This is never necessary. If
you are tempted to write

70 IF something THEN 120
80 GO TO somewhere

then write instead

70 IF opposite THEN somewhere

Sometimes the opposite would be achieved by the NOT as in the example above. or
sometimes you would use a different comparison. These two are the same:

50 IP J > S THEN 70
60 GO TO 30
10 t1-m

50 I F J < =S THEN 30

Do you recognise this? There are no prizes for guessing which is best.

Know your DRAGON

If you want to, you can make some really horrible things. Look at this:

70 IF Al*52 >A2*12 THEN 110
80 IF A2< > 0 THEN 20
90 IF Al-0 THEN 120
100 GO TO 20
1 1 0 IF A2 < 0 THEN 20
120 PRINT" DAD GOT IT RIGHT"

41

It is the same as the allowance program, but it is truly awful. Don't do things like
this. Not only is a GO TO never necessary after an IF statement, a cluster of IF
statements is never necessary. The NOT, AND, and OR operations are there to help
you. Use them!

6 Another way of making decisions - the ON . . . GO TO statement

This one is not used as often as the IF statement. It is sometimes useful to be able to
jump to one of several places in a program. The ON . . . GO TO statement does this.
It looks like

line number ON expression GO TO line line , .
number number

b

When the DRAGON sees an ON . . . GO TO statement, it works out the expression
and jumps to the line number a if the integer part of the result is I. We will find out
about integer parts in the next chapter. It means that if the expression gives anything
between I and slightly less than 2, the program jumps to line number a. Similarly, if
the integer part of the result is 2, it jumps to line number b, and so on for the number
of destinations you have given. If the expression gives a result less than I, or one
whose integer part is greater than the number of destinations, then the program just
continues with the next line in order.

EXAMPLE:

60 UH I+J GOTO 10, 20, 30

I f I+ J a number between I and just under 2 , the program jumps to line I 0.
If I+J between 2 and just under 3, the jump is to line 20.
If I+ J between 3 and just under 4, the jump is to line 30.
If I+ J 4 or greater, the program carries on to the next line after line 60.

42

Seven

SOME
FUNCTIONS

I Little helpers

Some functions

UFO!

There are a number or operations wi1h numbers tha1 you can't do very easily by
writing out a formula in BASIC. but which are needed quite often. BASIC provides a
number of little functions to help you out. Here is what there is:

Name
SQR(cxprcssion)
A BS(expression)
SG N (expression)
I NT(expression)

FIX(expression)

EXP(expression)
LOG(expression)
SIN(expression)
COS(expression)
TAN(expression)
ATN(expression)
RN D(expression)

Meaning
Square root of expression
Absolute value of expression
Sign of expression: I if >0. 0 if 0, - \ if <0
Integer part - the largest integer not greater
than expression
Truncate to an integer

These are specialised
mathematical functions,
covered in Chapter 19

Randy, the random number generator - has its
own chapter, Chapter 16

To use a function, simply write it where it is desired. with its expression in brackets
immediately after it. For example.

30 PRINT ABS (X)

prints the 'absolute value' of X , which i s X with a positive sign. Similarly you can use
functions inside functions as

Know your DRAGON

50 PRINT INT(ABS(X-Y))

Note the double brackets at the end.

2 Trying them out

43

Here we consider SQR. ABS, and SGN in turn. INT is super-useful and will be
looked at in detail in the next section, along with FIX.

(a) SQR
You could find a square root by an involved mathematical procedure
every time you need it - some people need them quite often. This would
mean spending a lot of time programming square roots - very boring.
The SQR function saves us the trouble. The only thing to remember is
that a negative number docs not have a square root.

EXAMPLE:
If you walk 1 0 0 metres north and 300 metres east, how far are you
from where you started?

Do you remember your hypotenuse formula? If you have a
right-angled triangle, then the hypotenuse is

h - �

where h is the length of the hypotenuse and a and b are the lengths
of the other two sides. Your little walk is an hypotenuse:

10 PRINT "GOOD MORNING, CAH I "
20 PRINT " FIND YOU AN HYPOTENUSE? "
30 PRINT " ENTER TWO SIDES"
40 INPUT N , E
50 PRINT " HYPONENUSE =" SQR(N*N+E*E)
60 GO TO 30

EXERCISE:

(b) ABS

Try it out. h won't give any trouble about negative square roots.
Do you know why I wrote N*N+E*E instead of Nl2+ El2? Find
out what happens if you try to SQR with a negative number.

This function forces the sign Of an expression to be positive. It can be
used to keep out of trouble with SQR, as for example in

90 QR=SQR (ABS (T))

44 Some functions

Very often a program is interested in the size of something regardless of
its sign, and this is when A 8S is used.

(c)SGN
Sometimes it is important to know when a number is positive, zero, or
negative. without caring about its actual value. In a program to manage
your bank account, you might want to act differently if your balance were
negative. zero, or positive:

50 ON SGN (B8) +2 GO TO 90, 3 0 , 10

This jumps to line 90 if you are in the red, line 30 if you're exactly broke,
and 10 if you have some money left. Why was 2 added to SGN(BB)?

Here is a nifty little statement to transfer the sign of one variable to
another: Z is supposed to have the same size as X but with the same sign
as Y.

90 Z=SGN (Y) *ABS (X)

I t will not work if Y i s zero.

3 Cutting away decimal places -the INT function

The !NT function is probably the most useful of the lot. which is why it is discussed
here separately. By its definition, INT(X) gives an answer which is the largest integer
which is not greater than X. This means, in simpler terms, that a positive number has
its decimal places stripped away:

INT(7J.7) is 73

but negative numbers move down:

!NT(- 73.7) is - 74

Look carefully at this last example. !NT does not just take away the decimal places
- it moves down.

(a) Rounding
You may want to round a result to the nearest whole number. Although
!NT does not do this on its own, it can be very easily forced to. To round
to the nearest whole number, simply add 0.5 before using INT:

400 RN-INT (XN+0. 5)

Nearly everyone knows how to do that, but here is a nifty trick. You can
round a number to any coarseness you want, which can be pretty useful

Know your DRAGON

with money for example. All you do is scale the values so that the
required coarseness is represented by integers, round it, and then undo the
scaling. Sounds complicated? Here are some examples.

(i) After calculations of interest on an investment, your friendly
Interstellar Savings Corp rounds your interplanetary credits to the
nearest centeroonie (there are 1 0 0 centeroonies to the credit).
Without rounding, one credit invested for 7 epochs with interest at
8% per epoch would give

30 PRINT l . 0817

But rounding to the next centeroonie could be done like this:

30 PY= l . 0817
40 PZ=INT { PY*l 00+0 . 5) /100
50 PRINT PZ

See how the payoff PY was scaled up by 100 before the integer part
was taken, and then down again.

(ii) Banana warmers come in cases of 50. A customer orders \VB
banana w..irmcrs. You h..ive to push this up (good for business,
that) to the next 50 to get the number of cases to send, called CS.

80 CS=INT{ (WB+4 9) /50)

This i s no t quite the opposite o f the ccnteroonie procedure. I have
added 49 to be sure that the customer who orders 51 banana
warmers is sent 2 cases.

(iii) Actur.lly inflation has spoiled the value of the interplanetary
credit to 1hc extent that the smallest coin issued by the Pan
Galactic Council is 5 ccnteroonies. If you bet a quarp (25
ccntcroonies) on a geegee at I l-7, the bookies will cut your pri7c to
the next lowest 5 centcroonics. This is truncation again, with our
clever scaling applied. So you get

140 PRINT INT { { 25* 1 1/7) /5) *5

centeroonies. The scaling is the other way reduced by five times
before the integer part is taken. A more gererous bookie would
round·

140 PRINT INT { { 25*11/7) /5+0 . 5) *5

45

46 Some functions

(b) Truncation - your actual chop!
When the decimal places are stripped away from a number, it is cal!ed
'truncation' This is what the bookies did to you above. The INT
function is not quite a truncation because of its operation with negative
numbers. However, the expression

SGN(X)*JNT(ABS(X))

is a truncation for any number X.

The FIX function on the DRAGON does the same thing.

FIX(X) is the same as SGN(X)+JNT(ABS(X))

(c) Converting units

EXAMPLE:
We can use INT very nicely to break numbers into parts. tr we
know the distance to San Jose in kilometres (unlikely, I know) we
may wish to convert this to whole miles plus yards, feet, and inches,
rounding to the nearest 0. 1 inch. We need to know that

Know your DRAGON

I mile = 1 .60934 kilometres

and also that

1 mile = 1760 yards
I yard = 3 feet
I foot = 12 inches.

The easy part is converting the kilometres to miles:

10 REM DO YOU KNOW THE
20 REM WAY TO SAN JOSE?
30 PRINT " HOW MANY KILOMETRES"
40 INPUT " TO SAN JOSE " ; KM
50 REM 1'1AKE IT MILES
60 ML=KM / 1 . 60934
7 0 PRINT '' THA'r ' s " ML "MILES "

Now we start using INT to rip off decimal places. First of al!,
whole miles:

80 REM NOW BREAK IT DOWN
90 REM FIRST WHOLE MILES
100 WM=INT (M L)

a n d the bit that i s left over can b e converted t o yards:

1 1 0 REM YARDS LEFT OVER
120 YD=l 760* (t1L-WM)

If you see how that works. the rest is easy:

130 REM \-JdOLE YARDS
140 WY=INT (YD)
1 5 0 KEM FE!::T LEFT VVER
1 6 0 F'r=3* (YD-WY)
l 70 KEM HHOLJ:.: FEET
180 WF=INT (FT)
190 REM INCHES LEFT OVER
200 IN=l 2* (FT-HF)
210 RE!-1 TO THE NEAREST 0 . 1
220 IN=INT (IN*l0+0 . 5) / 1 0
230 KEM P1UNT THE ANSWERS
240 PRINT WM "MILES" WY "YARDS"
250 PHINT WF "FE.t:::T" I N " INCHE S "

47

48 Some functions

Now this program is a bit long. and if you type slowly it could take you quite a while
to enter. Most people with a DRAGON will also have a cassette recorder. All the
examples in this book which are 8 lines or longer are available on a cassette, called ·95
Programs from Know your DRAGON'. If your computer dealer or bookshop don't
have it, please see the title page at the beginning of the book for information on how
to order one.

(d) Remainders are useful too
When you divide 22 by 7 the integer part of the answer is 3 and the
remainder is I. Supp0se we were dividing N by D and both N and D are
positive. The integer part of the answer would be

INT(N/D)

and the remainder would be

N -INT(N/D)'D

if N and D were positive. Do you see how this works?

EXAMPLE:
If you don't want to upset your customers in the hot banana trade.
perhaps it would be better not to send them all those extra banana
warmers. There are 50 to a case, remember. This program tells
you how many full cases to send and how many odd ones are
needed in addition. See the remainder?

10 REM ARE HOT BANANAS MUSHY?
20 PRHlT "HOW MANY BANANA"
30 INPUT "WARMERS ARE ORDERED" ; WB
40 REM FIRST THE QUOTIENT
50 CS-INT (WB/ 5 0)
60 PRINT "SEND" CS "CASES"
70 REM THEN THE REMAINDER
80 Rl\1=WB-CS*50
90 PRIN'r " AND" RM "ODD ONES"

Know your DRAGON

EIGHT

ROUND AND
ROUND WE GO

I Loop the loop

49

From modest beginnings, we have come a long way in learning to drive the DRAGON
32 in BASIC. One of the really useful things learned is making loops. First we found
out how to make a loop repeat forever, and how to use a variable to count. Then we
learned how to stop the counting at a particular value with an IF statement.

2 The hard way

Actually we have learned to count the hard way. Before discovering the easy way,
let's be sure we know what we did. First of all, a starting value was set up. Each time
around the inside of the loop the counter was incremented and tested to see if the loop
should be repeated again. It is easy to see the importance of these steps: initialise,
increment, and test. In the BASIC that we know so far, to repeat something 10 times,
we would need to write something like:

50 C=l
60

(initialise)

80 C=C+l (increment)
90 IF C < = l 0 THEN 60 (test)

3 The easy way

In BASIC there is a special pair of statements for loop control. These are the FOR
and NEXT statements. All you have to do is write

50 Round and round we go
50 FOR C=l TO 10

90 NEXT C

The FOR statement is responsible for initialising some variable - C in this case. The
FOR is rriatched by a NEXT statement naming the same variable.

EXAMPLE:
Type this program as one line, i.e. without pushing RETURN until the
very end. The colons squeeze several statements on one line:

10 FOR J=l TO 5 : PRINT J: NEXT ,J

Now try it without the line number. All these statements work in 'direct
mode'. Using the colon you can make a complete little program.

You will remember that the IF . . . THEN . . ELSE statement had to be all on one
line. Using colons you can make the TRUE and FALSE procedures as long as you
want:

30 INPUT I
40 IF 1 > 0 THEN' PROD=l : FOR K=l TO I :

PROD=PROD*K:NEXT K : PRIHT PR:

ELSE PRINT "I IS WRONG" : GO TO 30

EXAMPLE:
If you want to, you can use a FOR. . NEXT loop deliberately to waste
time. This program counts forever. A FOR. . NEXT loop at line 50
wastes a bit of time and has no other purpose.

10 REM COUNT FOREVER
20 I=l
30 PRINT I
40 REM WASTE TIME
50 FOR J=l TO 5 0 0 , NEXT J
6 0 I=I+l
70 GO TO 3 0

What would happen i f I had been used a s the FOR . . . NEXT variable?

4 Adding up again

You know the song about the Twelve Days of Christmas. On the first day your
truelove gives you a partridge in a pear tree. On the second day you get another
partridge plus two new gifts (turtle doves), and so on. How many gifts do you receive

Know your DRAGON 51

on day 12? Here is a program to add the numbers from 1 to 12. Notice that the
variable used for summing, GF, is given a starting value before the FOR. . NEXT
loop.

10 REM ADD NUMBERS TO TO 1 2
20 GF=0
30 FOR I=l TO 1 2
4 0 GF=GF+I
5 0 NEXT I
60 PRINT " SUM IS" GF

5 Mind your STEP

There is another useful facility in the FOR. NEXT loop. Everything up until now
has counted forward by ones. You may want to do something different. Using the
word STEP. you can have such things as

10 FOR J=l TO 21 STEP

10 FOR X=0 . 2 5 TO 1 . 5 0 STEP 0 . 2 5

10 FOR P=l0 TO 1 STEP -1

52 Round and round we go

Don't forget the NEXT in each case. There are a number or rules about
FOR . . . NEXT loops - mostly common sense - which will be given a bit later, after
some examples.

6 Multiplying up - factorials

Here is something else interesting. The product of all the whole numbers from I to n
is called the factorial of n. Mathematicians write this as n!.

n! = I •2•3_ . . •n

Now n! is pretty useful. Think of how many ways you have of arranging five
different coloured balls in a row. You can choose any one as the first one. You then
have a choice of four as the second. Furthermore, for each of these you can choose
any of the three remaining colours for the third one. You have 5*4*3*2* I possible
ways of arranging the colours, which is 5!. These statements would find N! for you
by multiplying:

70 F=l
80 FOR I=l TO N
90 F=F*I
100 NEXT I

This is a bit like adding up, only we're multiplying up! Here is a super-duper N!
program:

EXERCISE:

10 REM MAKE FACTORIALS
20 PRINT "HI THERE"
3 0 PRINT " SLIP ME A NUMBER"
40 PRINT "AND I ' LL FINO ITS"
50 PRINT " FACTORIAL IF I CAN"
60 INPUT N
70 F=l
80 FOR I=l TO N
90 F=F*I
100 NEXT I
110 PRINT " FACTORIAL" F
120 GO TO 3 0

Factorials get pretty big. Run this program and find out how big N can
be before the computer gets N! wrong. Do you remember how it
represents large numbers?

Know your DRAGON 53

7 Nesting

You've seen those little Russian dolls - one goes inside another inside another and so
on. Nested loops are the same. You can put one loop inside another as long as it uses
a different variable to count and as long as the loops do not cross. Here are correct
and incorrect examples:

Correct Incorrect

The loops are 'nested' The loops cross

20 FOR X=5 TO 15 FOR P=l TO

50 FOR Y=7 TO 1 STEP -2 45 FOR Q=l00 TO 101 STEP 0 . 1

8 0 NEXT Y 95 NEXT P

120 NEXT X 200 NEXT Q

EXAMPLE:
After the twelve days of Christmas, how many gifts have you received in
total? This would work it out and tells you the sum at the end of each
day.

10 REM PURE GREED
20 GF=0
30 FOR I=l TO 12
40 FOR J=l TO I
50 GF=GF+J
60 NEXT J
70 PRINT " DAY" I "TOTAL" GF
80 NEXT I

Notice that the upper limit of the inner loop is I. Very sly, that!

8 A note on program debugging - software probes and traces.

Perhaps you have a program that doesn't work, and you don't know why. People
would say your program had a 'bug' in it. Exterminating program errors is called
'debugging' Suppose the program to add up the twelve days of Christmas had an
error in it which you couldn't see; line 40 was

40 FOR J=l TO 12

54 Round and round we go

The usual way of finding errors is to put PRINT statements everywhere and use your
brain to spot things going wrong. You might add

35 PRINT"SUMMING ON DAY" I

55 PRINT J "MORE GifTS NOW HAVE" GF
56 INPUT "PRESS ENTER TO CONTINUE " ; X

If you run this you should spot the error immediately � on day I you are only
supposed to get I gifts and so line 40 should be

40 FOR J=l TO I

If you arc interested in a good cocktail party line, you could say that you had 'located
the bug by inserting software probes' A PRINT statement used this way is a
software probe.

The DRAGON has a special facility for making debugging even easier if the errors
arc in the logic of your loops or IF statements. If you put

line number TRON

then when your program is RUN it will tell you the line number of every statement
you execute until you hit

line number TROFF

this is called a ·program trace' - our vocabulary is getting very rich isn't it. On the
twelve days of Christmas you would want

5 TRON

right at the beginning. If you forget to put TROFF somewhere, it stays on forever
and ever even when you run a new program.

85 TROFF

EXERCISE:
Try both those methods on the greedy program. Put the deliberate error
in first. Which is best? Do you see the need for the INPUT statement'?
Use one in the trace method. Now which is best?

9 Is yours prime?

A number which cannot be broken down into the product of smaller ones except I is
called a prime number. For example, 21 is 3x7 so it is not prime, but both 3 and 7 arc
primes; the first few are I , 2, 3, 5, 7, 11. How can we tell if a number N is prime?
We can try all integers I from 2 to SQR(N) to see if they are factors. How will we

Know your DRAGON 55

know? Because if I is a factor, the remainder is zero when we divide N by I. We did
remainders in the last chapler. If we find any zero remainder, then N is not a prime.
Here is the bit that does this:

100 REM IS N A PRIME?
110 FOR I=2 TO ABS (N) f 0 . 5
l 20 R=N-INT (N/I) *I
130 IF R=0 THEN 170
140 NEXT I
1 50 REM IF GET TO HERE N IS PRIME
160 PRINT N "IS A PRIME NUMBER"

Now let's use this to find all the primes less than M, a number that you type in:

10 PRINT " SUPPORT YOUR LOCAL"
20 PRINT " PRIME SEARCHER. "
30 PRINT "GIVE ME ANY NUMBER"
40 PRINT "GREATER THAN 2 AND"
50 PRINT " I ' LL TELL YOU EVERY"
60 PRINT " PRIME FROM 3 TO THE"
70 PRINT "THE NUMBER YOU ENTER"
80 INPUT MX
90 FOR N=3 TO MX

the rest of the program as above

1 70 NEXT N

This program has a nested loop.

EXERCISE:
Run this program. Make it count the primes, and find out how many
there are less than 500 - note that 1 and 2 are not found.

l O More uses for factorials

The factorial n! was the number of ways of arranging n different things in a row.
There are some more complicated things that factorials can do. The number of ways
of arranging n different things where you can oi-tly take r of them at a time is called
the number of 'permutations' of n things taken r at a time, or

56 Round and round we go

n (n- 1) . . . (n-r+ I)

n!
(n-r)!

To find this you could take n! and divide it by r! Belter still, you could take the
product of all numbers from n-r+ I to n:

10 REM PERMUTATION CALCULATION 60 PR=l

20 PRINT " I I LL CALCULATE PERMS" 70 FOR I=N-R+l TO N

30 PRINT "FOR YOU, BOSS ! " 80 PR=PR*I
40 INPUT " HOW MA..�Y OBJECTS" ; N 90 NEXT I

50 INPUT "HOW MA.i.�Y CHOSEN" ; R 100 PRINT "NO. OF PERMS IS"

EXERCISE:
Try i1. What is nPn? What is nP0? What does this program do if r>n?
Is that right? What docs this program do if r<l? I s that right?

PR

Finally. you may wish to know how many combinations there are if you can select r
things from a choice of n. but you arc not interested in the order. This is the same as
taking the r! rcorderings out of nPr.This is called nCr:

C -
n r

EXERCISE:

n!
r!(n - r)!

Make a program to do nCr.

11 The rules

line number FOR variable = expression TO expression STEP expression

(i) The FOR slalcment gives the initial, final, and step values. These can be
any expressions.

(ii) A variable name must be used as the counter. There is no need to
actually use it, as in:

10 FOR K=l TO 5

20 PRINT "OVER AND"
30 NEXT K

(iii) The STEP part is optional. If you leave it out, the step size is l. You can
make the step size fractional or negative.

Know your DRAGON

(iv) Regardless of the initial, final, and step values, the loop will be done at
least once, as in this silly loop:

40 FOR 88=5 TO 1 STEP
60 PRINT " DID IT? "
80 NEXT 8B

which is done once.

(v) The initial, final, and step values are considered only when the loop is first
entered. They cannot be altered within the loop. For example, in

50 FOR I=J TO K STEP L
60 L=L*2
70 K=K-1
80 NEXT I

all that messing around with L or K has no effect on the number of
repetitions of the loop. If J, K, and L were I , 10, and 1 the loop would be
repeated 10 times.

(vi) The counter itself can be changed and this will affect the loop. For
example

50 FOR I=l TO 10
60 I=I+ l
70 PRINT I
80 NEXT I

is repeated only 5 times. Be sure you understand the difference between
this and rule (v).

(vii) You must match every FOR statement with a NEXT statement which
names the same counter.

line number NEXT variable

Actually on the DRAGON you can just have

line number NEXT

and it is obvious to the computer which loop should be closed. However,
it is not always so obvious to you. You could save yourself a lot of trouble
if you always use the fu!l version.

(viii) Loops must be nested properly. Nested loops cannot use the same
counter.

57

58 Get it taped

Nine

GET IT TAPED

I You might like to know ...

Nowhere else in this book is it assumed that you have anything to go with your
DRAGON 32 except a television set, probably colour. However you will have noticed
that the examples arc getting longer and longer, with some quite large ones to come.
You may find it convenient to save programs on tape so that you can use them again
later. Some of the music and graphics programs that are coming up soon might be of
particular interest. Indeed, many video games are available on casseue. Also, all of
the programs that are eight lines or longer in this book have been recorded for you on
a cassette which you can order - look on the title page at the beginning of the book
for details.

2 Fire it up

A remote controlled recorder is best. You really shouldn't use anything else. The
Radio Shack computer cassette recorder from TANDY is inexpensive and is ideal for
use with the DRAGON 32 because it has all the neccesary remote controls and works
with the DRAGON's connecting cables. Do this:

(i) Connect the 'AC in' socket on the cassette recorder to the
electricity supply using the power cable - of course! Now if you
want to you can use the recorder like any portable audio recorder
for music and so on. You could also use it with batteries, although
there doesn't seem much point in that when you're using it with the
computer.

(ii) Connect the recorder to the DRAGON. The cable plugs
easily into the socket marked 'cassette' in the side of the computer.
The smaller plug on the end of the blue wire goes into 'MIC' on the
side of the recorder. The plug on the red wire goes into 'AUX', and
the white one goes into 'EAR'. Turn the volume control to 5, which

Know your DRAGON

isn't there, actually. Halfway between 4 and 6 is ideal.
3 Load a Tape

59

Is there anyone left in the world who doesn't know how to put a cassette in? Oh, sorry
there. Well all you do is pop it in with the tape towards you and close the lid. Push
REWIND to get the tape back to the beginning, and then if you push STOP and then
PLAY you're ready to go. If you want to get the tape out, push STOP and then
EJECT. Whoops! Mine practically throws the cassette at me.

4 How to load a program - CLOAD

If there is only one program on the tape, enter the command CLOAD. This will load
the first program found. If that program has a name, you will see it on the screen
while the program is loading.

If there are several programs on the tape, you can load them one after another using
CLOAD over and over again. The command CLOAD always loads the first program
it finds.

If you know the name of the program you want, enter CLOAD giving the name in
double quotes, like

CLOAD "PRIMES"

which will search for and load the prime searching program from Chapter 8 of this
book. While it's searching, you will see the names of all the programs that are found
appear on the screen while the computer is going past them. The code S that you see
means 'Searching' and F means 'Found'.

Therefore, if you don't know what is on your tape, type in something like

CLOAD "JUNK"

and as long as JUNK isn't the name of a real program, you will find out the names of
everything on your tape.

You may get an error message 'I/O ERROR' if the computer reads something it
doesn't understand like a bit of Beethoven or a fragment of a old program. You can
rewind and try again, or go on by entering the command again. If it searches for
hours without finding anything, then either

(i) There isn't anything there
(ii) The volume control is wrong - perhaps the dog changed it, or
(iii) The cable isn't connected.

Knowing the proven high intelligence of DRAGON owners, this isn't going to give
anyone much trouble.

60 Ge1 it taped

If you have the tape '95 Programs from Know your DRAGON', you will rind that a
list of the page numbers and names of the 95 programs with the approximate counter
settings to use with the Radio Shack recorder is printed on the insert card that comes
with the cassette. There is also provision for you to write in your own counter settings
if you have some other recorder.

S Sal'C a Program

Now this is a bit more tricky. Before you try, remember that when you say you want
to save a program on tape, it gets saved on the tape wherever the tape happens to be.
So you have to be careful. You also have to remember to press the RECORD button
as well as the PLAY button on the recorder. Otherwise the computer will pretend to
save the program but it won't be there. The Radio Shack recorder won't let you press
record if you are trying to use a protected tape.

(i) On a new tape - CSA VE

Make sure the tape is rewound. If the tape has a 'leader' on it,
which is a bit of tape that isn't brown at the beginning, then do a
tiny bit of 'FAST-F' to get into the tape itself. Leaderless tapes are
less troublesome than ordinary ones with leaders. Press PLAY and
RECORD and enter the command

CSA VE .. name"

to save your program. You can put in CSA VE without a name but
then you could have trouble finding your program later on. As soon
as you have done this. it isn't a new tape any more.

(ii) On an old tape - CSA VE

Usually to save a program on an old tape which already has
programs on it, you will want to put it on the end. Remember that
a program is saved wherever the tape happens to be at the time.
When you know you're at the right place, press PLAY and
RECORD and enter

CSA VE "name"

just as you did before - but choose a new ·name'. You can safely
CSA VE one program after another.

(iii) Finding the right place - SKIPF

Most of the time your cassette won't be in the right place.
Probably you know the name of the last program on the tape. If
you do, enter

Know your DRAGON

SKIPF "name of lasl program"

and the cassette will search until it has passed the last program on
your tape. You can then safely CLOAD.

You will notice that SKIPF tells you the names of the programs it
is skipping, just like CLOAD. Therefore, you can use it to find
what is on a tape, just like CSA VE:

SKIPF skips over the next program.

SKIPF .. name" skips over programs until it has passed
the program called 'name'.

I recommend using something like

SKIPF "JUNK"

to get past the last program on a tape, relying on an 1/0 error to
stop you at the right place. This doesn't work on new blank tapes
because the error never occurs. Anyway, be careful.

6 Double check everylhing

61

It is a very good idea to make sure that you can reload a program as soon as you have
saved it - because there are a lot of little things that could go wrong. After you do

CSA VE "MYPROG"

to save your program called 'MYPROG', rewind the tape - perhaps not all the way
but far enough to get back over MYPROG. Then put in

CLOAD "MYPROG"

and make sure it works by listing the program again. If it doesn't work check the
following:

(i) Was volume control at 5?
(ii) ls the cable connected?
(iii) Did you push PLAY and RECORD?
(iv) Is yours a protected tape? Some tapes cannot be written on.

There are little plastic tabs that can be removed to make it
impossible to record on a tape. If You do have a valuable tape, you
can do this to protect it. Most prerecorded tapes you buy will be
protected.

62

Ten

SOUNDS
INTERESTING

I Resources

Sounds interesting

The DRAGON 32 has a sound generator inside it which can be used to create a
variety of sounds. It produces a single tone whose pitch and duration can be
controlled, and as we will see in Chapter 23, the volume can be turned up and down.
The most obvious use for this is in making music, but quite a few useful sound effects
are also possible. Later, when we are putting fancy pictures on the screen, we will see
that it is usually possible to make a sound that fits the picture.

2 Beep Beep

Here, to start us off, is a blast from a car horn. Push enter each time you want it to
honk:

10 REM GET OUTTA MY WAY
20 SOUND 1 2 8 , 8
30 SOUND 1 2 8 , 8
40 INPUT X
50 GO TO 20

If you can't hear it, turn up the volume and try again. I f you still can't hear it,
perhaps you need to tune your set more accurately. Clearly the SOUND statement is
the noisy bit. The line

20 SOUND 128, 8

means that a tone is to be produced with pitch 128 and duration 8. Generally, you
write

line number SOUND pitch, duration

Know your DRAGON 63

where
the pitch is a number between 1 and 255

and
the duration is a number between 1 and 255

In the above example, you can hear a slight break between the two SOUND
statements.

3 Low to High

This little program will give you an idea of the range of pitch that is available:

10 FOR I=l TO 255 STEP 1 6
20 SOUND I , l
3 0 NEXT I
40 GO TO 10

Zounds! Can't stand that one for long.

There are quite a few things you can do by changing the pitch of a sound. Does this
sound like a police car?

10 SOUND 1 64 , 6
2 0 SOUND 1 2 8 , 6
30 GO TO 10

4 Long and Short

This little program will drive them wild:

10 FOR I=l TO 8 STEP
20 SOUND 128 , I
3 0 SOUND 164, I
40 NEX:T I
50 GO TO 10

By listening to this for a little while. you can get a feeling for the length of a note.
Clearly

SOUND 128,1

is fairly brief. while

64 Sounds interesting

SOUND 128,8

which is eight times longer lasts for quite a while.

SOUND 128,255

is very boring. Don't try it - you can't BREAK into a SOUND, but you can push
the RESET button on the back of the computer without losing the program.

Naturally, SOUND can be used in direct mode. Try this:

FOR I=l TO 2 5 5 : SOUND I , 1 : NEXT I

All systems go. We have ignition. We have lift off. Bye!

So now we can try something more ambitious. With a bit of imagination this sounds
like a motorcycle coming towards us:

10 SOUND 9 , 1
20 SOUND 8 , 1
30 GO TO 10

and this sounds like one going away:

90 SOUND 2, 1
100 SOUND 1 , 1
1 10 GO TO 90

So we can have the motorcycle approach us at high speed, pass by, and disappear.
Because of the "Doppler Effect" we can make it a bit realistic by having the pitch of
the engine drop at the moment of passing. Hang on:

1 0 REM HELL I s ANGELS
20 FOR I=l TO 1 2
3 0 SOUND 9 , 1
40 SOUND 8, 1
50 NEXT I
60 SOUND 6, 1
70 SOUND 4 , 1
80 FOR I=l TO 1 2
90 SOUND 2 , 1
l •J0 SOUND 1 , 1
110 NEXT I

Know your DRAGON 65

S Music be the food of life

If we know what pitch in the SOUND statement to use for each note of the musical
scale, we can make tunes. Actually the computer's notes are not exact. They are best
near the bottom and quite bad in some cases near the top. Here is a table:

Note

C
CH
D
D#
E
F
F#
G
G#
A
A#
B

Bottom
Octave

5
19
32
45
58
69
78

Middle
Octave

89
99
108
1 1 7
125
1 33
140
147
153
159
165
170

High
Octave

176
180
185
189
193
197
200
204
207
210
2 1 3
2 16

We can try to make a tune. Do you know this one?

10 REM WOOLY MUSIC
20 SOUND 89, 4
30 SOUND 89, 4
40 SOUND 147 , 4
5 0 SOUND 1 4 7 , 4
60 SOUND 159 , 2
70 SOUND 1 7 0 , 2
8 0 SOUND 1 7 6 , 2
9 0 SOUND 1 5 9 , 2
100 SOUND 147 , 8
110 GO T O 2 0

Higher
Octave

2 1 8
221
223
225
227
229
231
232
234
236
237
238

Top
Notes

239
241
242
243
244

Of course. Now you get the idea. You can see what has been done with the durations
to get the tune right. Actually it can be very tedious to write such a long list of
SOUND statements. We are next going to learn how to set up the data for the tune
in a sort of table and then we can write a program which will play any tune.

6 Setting up DATA inside the computer

It can be crashingly boring to have to type a lot of values in through the keyboard or
to have a long list of assignment statements. So BASIC has a method of defining a
list of values in advance. You do this with a DATA statement, and you get at the
values using a READ statement. This will save the effort of writing a lot of SOUND
statements in our music programs.

66

The DATA statement is

line number DATA constant, constant,

as for example

30 DATA 1 59 , 170 , 176 , 1 59

Sounds interesting

The READ statement is used to transfer values from the DATA list to variables:

line number READ variable, variable, . .

The values are taken from the DATA list and assigned to the variables one by one for
example, in

10 DATA 3 8 . 2 , 10 . 5 , -9 . 6
2 0 READ A , B , C
30 PRINT A, B , C

A wilt b e assigned the value 38.2, 8 the value 10.5, and C will b e -9.6. I n this
example the number of items was exactly right.

If there is d.ita left over after a READ statement, another READ will continue
through the data list. It is as if a pointer moves through the DATA list. Look at this
program:

10 DATA 3 8 . 2 , 10 . 5 , -9 . 6
20 FOR I=l TO 3
30 READ Z
40 PRINT Z
50 NEXT I

At the beginning. the pointer is at the beginning:

next value
I

38.2 10.5 -9.6

Then with l = l , the statement READ Z assigns 38.2 to Z and moves the pointer
along:

38.2

next value
I

10.5 -9.6

so that when 1=2, 10.5 is assigned to Z and the pointer moves again:

Know your DRAGON

38.2 10.5

so that the final READ gives Z the value -9.6.

next value
I

-9.6

67

You can also have several DATA statements, and this extends the list, still in the
order that the data originally appears as in

10 DATA 89 , 89 , 89 , 89
20 DATA 147 , 147 ,147, 147
30 DATA 159 ,170 , 1 76 , 159
40 DATA 14 7 ,147 , 14 7 , 147
50 FOR I=l TO 16
60 READ Nl
7 0 SOUND Nl , 2
80 NEXT I

If you run this, it will play a tune for you. This is beginning to look promising? The
correct leng1hs of the notes are obtained by repeating them. If you don't like this, it
will be improved a bit later on. It is wrong in READ statements to ask for more
values than are available in all the DATA statements.

The RESTORE statement returns the pointer to the beginning of all the DATA
statements, so that all the values can be used again. There is no way of getting back
to the middle of the list, except for going to the beginning using RESTORE and
reading through the list, for example in a FOR . . . NEXT loop.

EXAMPLE:
Add the following lines to the little tune. and try it:

90 FOR J=l TO 500, NEXT J
100 RESTORE

110 GO TO 50

Do you see the.purpose of line 90?

We can make the program slightly more sophisticated by having the first item in the
DAT A statements tell us the tempo. As before, we read the notes one at a time and
play them using a SOUND statement. So that we can make tunes of any length, we
signal the end by an impossible nole.

68 Sounds interesting

OH E.XPSCTING A 01TOF WA6N� I

WGRE YOLJ ?

� Jl
� �E

V' .,�� \ ', f

10 REM PLAY ANY TUNE
20 REM FIRST READ TEMPO
30 READ TM
40 REM NOW READ A NOTE
50 READ Nl
60 REM QUIT IF IMPOSSIBLE
70 IF N l < l OR N l > 255 THEN 110
80 SOUND N l , TM
90 GO TO 50
l?.10 REM THE QUIT BIT
110 END

Here is a little hornpipe:

200 REM A SAILOR ' S HORNPIPE 310 DATA 133 , 108 , 133
210 REM THE TEMPO 320 DATA 159 , 147 , 133
220 DATA 2 330 DATA 125 , 89 , 89
230 REM THE TUNE-ONE BAR PER LINE 340 DATA 32 , 89 , 89
240 DATA 147 350 DATA 125 , 89 , 125
250 DATA 1 25 , 89 , 89 360 DATA 147 , 13 3 , 125
260 DATA 32 , 89 , 89 370 DATA 133 , 125 , 133
270 DATA 125 , 89 , 125 380 DATA 159, 147 , 133
280 DATA 147 , 13 3 , 125 390 DATA 125 , 8 9 , 89
290 DATA 1 3 3 , 108 , 108 400 DATA 89, 0
300 DATA 58, 108, 108

Know your DRAGON

EXERCISE:
Try it. Here is a program that is quite a bit too long for your screen.
Make sure you know enough about the LIST command to be able to look
at any part of the program you want.

69

The sailor's hornpipe was a tune in which all the notes had the same length. It would
be very boring to have to give the duration of every note in a DATA statement,
although it could be done quite easily. All you have to do is delete line 30 in the
previous program and change line 50 to

50 READ Nl , TM

With this change, the data must include the notes and their durations in pairs. Do
you know this tune?

200 REM SWING WITH ' TONIO
210 REM EA.CH LINE I S A BEAT
220 FOUR LINES MAKE A BAR
230 DATA 193 , 2
240 DATA 207 , 2 , 207 , 2
250 DATA 207 , 2 , 200 , 1 , 19 3 , 1
260 DATA 216 , 6
270 DATA 216 , 1 , 210 , 1
280 DATA 207 , 2 , 207 , 2
290 DATA 207 , 2 , 20 0 , 1 , 193 , 1
300 DATA 216, 6
310 DATA 216 , L 210 , 1
3 20 DATA 207 , 2 , 210 , 1 , 216 , 1
330 DATA 210 , 2 , 207 , 2
340 DATA 200 , 2 , 189 , 2
350 DATA 170 , 2 , 0 , 0

Why not put in

1 1 0 RESTORE
1 2 0 GO TO 50

to make it go on forever.

We can make the amount of data less if we agree that any DATA value of 31 or less
is not a note, but a new duration, and that any value of 32 or greater is a pitch. This
way we lose F and F# at the bottom of the scale, but we can shorten most pieces.
Here is the program, rewritten again to do this.

70

10 REM PLAY ANY TUNE
20 REM READ A SOMETHING
30 READ Nl

Sounds interesting

210 REM EACH LINE IS A BEAT
220 FOUR LINES MAKE A BAR
230 DATA 2 , 193
240 DATA 207 , 207 40 REM QUIT IF IMPOSSIBLE

50 IF Nl<l OR Nl > 2 5 5 THEN

60 REM IS IT A NOTE?
140 250 DATA 207 , 1 . 200, 193

260 DATA 6 , 216
70 IF Nl> 3 1 THEN 110
80 REM NO, IT ' S A TEMPO
90 TM=Nl
100 GO TO 30
110 SOUND Nl , TM
120 GO TO 30
130 REM THE QUIT BIT
140 END
200 REM SWING WITH ' TONIC

270 DATA 1 , 216 , 210
280 DATA 2 , 207 , 207
290 DATA 207 , 1 , 20 0 , 1 9 3
300 DATA 6 , 216
3 10 DATA 1 , 21 6 , 210
320 DATA 2 , 207 , 1 , 210, 216
330 DATA 2 , 210 , 207
340 DATA 2 , 200 , 189
350 DATA 170, 0

The durations now come before the pitches, but only have to be given when a rate has
a different duration from the one before it.

Here is a little thingie by Bach. Fantastic!

200 REM BOP WITH J . S .
210 REM EACH LINE I S A BEAT
220 REM TWO LINES MAKE A BAR
230 DATA 2 , 216 , 1 , 22 3 , 216
240 DATA 2, 200 , 1 , 216, 200
250 DATA 2 , 185 , 1 , 20 0 , 185
260 DATA 4 , 170
270 DATA l , 140 , 17 0 , 1 8 5 , 170
280 DATA 180, 1 70 , 18 0 , 1 7 0
290 DATA 1 6 5 , 180 , 19 3 , 180
300 DATA 2 , 185 , 170
3 10 DATA 216 , 1 , 22 3 , 216
320 DATA 2 , 200 , 1 , 216, 200
330 DATA 2 , 185 , 1 , 200, 185
340 DATA 4 , 170
350 DATA 2 , 18 5 , 185
360 DATA 185 , 185
370 DATA 216 , 185
380 DATA 185 , 180

390 DATA 200, 200
400 DATA 200, 200
410 DATA 223 , 200
420 DATA 200 , 197
430 DATA l . 180 , 20 0 , 21 0 , 200
440 DATA 207 , 200, 207 , 200
450 DATA 197 , 20 7 , 21 6 , 207
460 DATA 210 , 20 7 , 210, 207
470 DATA 200 , 210 , 20 0 , 197
480 DATA 200 , 216 , 200, 197
490 DATA 200 , 221 , 20 0 , 197
500 DATA 200 , 223, 200 , 197
510 DATA 200 , 223 , 221 , 216
520 DATA 221 , 210 , 207 , 200
530 DATA 2 , 210, 207
540 DATA 4 , 200
550 DATA 0

It's the flute solo in the last movement of the Suite in B minor. Why don't you put in
the rest of it? You will find some more music in Chapters 17 and 21.

Know your DRAGON

Eleven

A PICTURE IS
WORTH A
THOUSAND WHAT?

1 Or was it something to do with Fiona of Troy?

71

1000? 10,000 .. 50,00Q.

Anyway, one of the delightful features of the DRAGON 32 Computer is its ablity to
launch ships, sorry, I mean make pictures. There are several ways of doing this. In
this chapter we are going to operate through PRINT statements, but later it will be
done in other ways. In Extended Colour BASIC there are a number of special
statements to enable you to use the high resolution graphics of the DRAGON 32
Computer in some quite advanced ways.

2 All about PRINT

You have probably noticed that when you use the PRINT statement to put values on
the screen, they mostly appear in two 'fields' Your text is 32 columns wide, and the
first field used by numbers is made up of columns 1 -16 and the second by columns
17-32. If you don't believe it, use this example to convince yourself:

10 INPUT A, B
20 PRINT A, B
30 GO TO 1 0

I f i t i s short enough. you can also get a message t o appear in one column and numbers
in the other:

10 r-10
2 0 PRINT " A MESSAGE ! " , I
3 0 I=I * l 0
40 F O R J-1 T O 500
50 NEXT J
60 GO TO 20

72 A picture is worth a thousand what?

When you try this example you will see that the columns continue to line up even arter
the display switches to exponential form for large numbers.

You can force BASIC not to use these two fields. The secret is the semicolon. Try
these:

10 PRINT " ONE" , "TWO"
20 GO TO 10

10 PRINT "ONE" ; "TWO"
20 GO TO 10

Ir there is a semicolon in a PRINT statement, the output is squashed together.

Another great semicolon feature allows you to continue printing on the same line.
Normally a PRINT statement starts a new line on your text screen. But if you leave a
semicolon dangling at the end of a PRINT statement, the next PRINT continues on
the same line. You can do something similar with commas, but it isn't as useful. Try
these and see the difference. The effect is shattering.

10 FOR I=l TO 5
20 PRINT I
30 NEXT I

10 FOR I=l TO
20 PRINT I,
30 NEXT I

10 FOR I=l TO 5
20 PRINT I ;
3 0 NEXT I

This has many great possibilities. In Chapter 16 I will show the geniuses how to make
graphs of mathematical functions. Here is a sneak preview which everyone should
enjoy:

10 FOR I=l TO 14
20 FOR J=l TO I
30 PRINT " * " ;
40 NEXT J
50 PRINT
60 NEXT I

I call that one 'Climb Every Mountain'. See how the clever inner loop prints the right
number of stars! See how mild mannered line 50 puts us on a new line just in the nick
of time! Overwhelming.

One more little thing you may need to know. When you PRINT a message and follow
it with a value, or another message in the same PRINT statement, you don't need any
punctuation. The computer will assume you mean a semicolon:

10 FOR I=l TO 10
20 PRINT " S " "E" "E" I " I "
30 NEXT I

It even knows when to squash two letters together, and when to leave a space before
(and after) a number.

Know your DRAGON 73

3 Two Fantastic Functions - TAB and POS

Well, TAB is fantastic anyway. TAB can only be used in a PRINT statement, and
makes your output jump immediately to the column you want. This is very useful in
making pretty pictures. Here's an example:

10 FOR I=0 TO 13
20 PRINT TAB (I) ; " * "
3 0 NEXT I

Notice the semicolon to squash the star into the column we want.

In Extended Colour BASIC, if you want to know where your PRINT statement is on
the screen at the moment, use POS(X) like any ordinary function to tell you. The X
can have any value and has to be there, but it isn't used by the POS function. POS
tells you the column number you are about to use. Can you predict the value of POS
in this example? If you can, your understanding is profound.

U.'I PRINT "FIRST"
20 FOR I=l TO 5
30 FOR J=l TO I
40 PRINT " # " ;
5 0 NEXT J
60 NEXT I
70 PRINT POS (X)

4 Roll over, Rembrandt

Now we know quite a lot about the PRINT statement, and can begin to find out how
to use it to make pictures. The simplest way to produce a shape on the text screen is
to make it up using keyboard symbols and put it there using PRINT statements. We
will see how to put it exactly where it is wanted shortly. But first, we create a shape.
Referring back to our discussion of the Trojan Wars, here is how to draw the famous
paddle steamer, Queen Fiona.

10 PRINT
20 PRINT TAB (3) ; " # "
30 PRINT TAB (5) ; "# "
4 0 PRINT TAB (6) ; "M"
50 PRINT TAB (6) ; "M "
60 PRINT TAB (3) ; " ITT TTI " .
7 0 PRINT " ITT O TTTT / "
8 0 PRINT " I OXO / "
90 PRINT " IWWWWWOWWWWW/ "
100 PRINT

74 A picture is worth a thousand what?

But it isn't all that good. We need some other shapes that are better for drawing
pictures. These are available in the DRAGON, but are not on the keyboard. You
have to ask for them with a special function. Try this:

10 FOR I=0 TO 255
20 PRINT CHR$ (I) ;
30 NEXT I

This produces different shaped blobs on the text screen. The function CHR$(1)
produces a character or symbol, and you get a different one for each I from O to 255.
All the letters and other keyboard symbols are included. Try this:

10 FOR 1=0 TO 1 5
2 0 PRINT CHR$ (192+I) ; " " ;
30 NEXT I

Now that was a bit unexpected, wasn't it! A number of pretty clever (and pretty
pretty) things are going to come out of this. The blobs are called "graphics
characters", and here is a list of them.

Graphics Graphics Graphics Graphics
Shape No Character Shape No Character

I Iii

I! �
Ill 10 [I

� I I �

.. 1 2 .l

I] 1 3 tl

� 14 r.
� 1 5 D

For the black and white ones, add I 92 to the shape number and use CHRS:

10 FOR I=l 92 TO 207
20 PRINT CHR$ (I) ; " " ;
3 0 NEXT I

Know your DRAGON

Now we can create a better boat - the QF II! On a bit of squared paper, sketch
the drawing you want, work out which graphics symbols go where, and we have

20 REM THE SMOKE
30 PRINT TAB (3) :CHR$ { 2 0 7)
40 REM THE FUNNEL
50 PRINT TAB (6) ;CHR$ (1 9 2)
60 REM THE TOP DECK
70 PRINT TAB (2) ;CHR$ (193) ;
80 PRINT CHR$ (1 9 5) :CHR$ (1 95) ;
9 0 PRINT CHR$ (19 5) ;CHR$ (195) ;
100 PRINT CHR$ (19 5) ;CHR$ (194)
1 1 0 REM THE MIDDLE DECK
1 2 0 PRINT CHR$ (19 3) ; CHR$ (1 95) ;
130 PRINT CHR$ (199) ;CHR$ (201) :

140 PRINT CHR $ (2 0 7) ; CHR$ (2 0 1)
150 PRINT CHR$ (207) ;CHR$ (2 0 1)
160 PRINT CHR$ { 203) ; CHR$ (19 5)
1 70 PRINT CHR$ (1 9 5) ;CHR$ (1 9 5)
1 8 0 PRINT CHR$ (1 9 3)
1 9 0 REM WATERLINE
200 FOR I=l TO 1 2
210 PRINT CHR$ (1 63) ;
220 NEXT I
230 PRINT
240 PRINT

75

76 A piclure is worth a thousand what?

It is not possible to see what the picture is like without rerunning the program. So run
it. When you do, you will immediately notice that I have cheated a bit - where did
that blue water come from? All will be revealed in a moment.

S Pretty, pretty

When you ran this little program a few pages back, you saw for the first time (in this
book) the range of colours on the DRAGON 32.

10 FOR I-0 TO 255
20 PRINT CHR$ (I) ;
30 NEXT I

The 9 available colours all have a number:

Colour O is black
Colour I is green
Colour 2 is yellow
Colour 3 is blue
Colour 4 is red

Colour 5 is 'buff (looks white to me)
Colour 6 is cyan (a greeny blue)
Colour 7 is magenta (a purply blue)
Colour 8 is orange

All the characters with numbers between 128 and 255 are coloured graphics symbols.
You take 128, add the symbol number as defined a few pages back, and add (colour
number - I) • 16.

Character number = 128 + symbol number + (color number - I) • 16

For example, the waterline of the QF I I is character number 163, which is a black and
blue graphics symbol:

128 + symbol no 3 + () - I) • 16

� blue

To make this simpler, you could call this

symbol number + thingie

where for the various colours you can look up 'thingie' here:

Thingie 128 green
Thingie 144 yellow
Thingie 160 blue
Thingie 176 red

Thingie 192 'buff
Thingie 208 cyan
Thingie 224 magenta
Thingie 240 orange

Know your DRAGON

Twelve

YET MORE
COLOURFUL

I lntroduclion

77

In this Chapter we learn a second method or making pictures. Here we treat the text
screen as a map, and we can then arrange to put any symbol we want anywhere we
want, in any colour. A new version or the PRINT statement is used, and we also find
out how to blank out the entire text screen. You will notice that I have started to call
your screen the 'textscreen'. The Extended Colour BASIC on your fantastic
DRAGON 32 gives you yet another screen that we haven't seen yet - the 'graphics
screen' which we'll find in the next Chapter.

2 Your text screen is a map - the PRINT @ statement

There are 16 rows and 32 columns on the text screen. Up until now the cursor has
moved across the screen as you PRINT, and we know how to make it stay on one line
with a semicolon, and how to get it to move to the next one.

Actually every row and column on the text screen has a number or 'address' that you
can refer to. The top left corner is address number 0, for example. There is a special
version or the PRINT statement that lets you say exactly where on the screen you
want something to go. Type this in

PRINT @ 0 , " * "

and you will see the • appear in the top left corner or the screen. In general, you put

line number PRINT @ address, something to print

0 to 5 1 1

78 Yet more colourful

in a BASIC program to get something to appear exactly where you want it on the text
screen. The addresses run across the screen. Address 0 is the top left corner, address
I is next to it, and so on. When you run out of room in a row, you drop down into the
next one. Here is a program to let you explore the screen addresses. There are 512
different ones - you can give the program any address from 0 to 5 11 and it will put a
blob there:

10 REM POKE AROUND THE SCREEN
20 PRINT "GIVE ME A SCREEN I\DDRESS"
3 0 PRINT " AND I ' LL PUT A BLOB THERE"
40 INPUT X
50 PRINT@ X, CHR$ (2 0 7)
70 GO TO 4 0

Here i s a formula t o help you work out the screen address i f you know the row and
column numbers. If you call the 32 columns by numbers from O to 3 I and the 16 rows
from O to 15, then you can use this formula:

Try this:

Text Screen Address = Column Number + 32 * Row Number
0 to 3 1 0 to l 5

10 REM SCOTLAND THE BRAVE
20 FOR I=0 TO 510
30 PRINT CHR$ (17 5) ;
40 NEXT I
50 FOR I=0 TO 1 5
6 0 IS=I+3 2 * I
70 PRINT@ IS, CHR$ (207)
80 JS= (l6- I)+ 3 2 * I
9 0 PRINT@ JS, CHR$ (207)
100 NEXT I

I suppose it's pretty, but it isn't what I want. I'm trying to draw the flag of St
Andrew, which is a white X on a blue background. Before I started, I drew enough
blue blobs to make the whole screen blue, but then some seem to have been wiped out
by the familiar green. Why?

It all has to do with semicolons. Whenever there is a PRINT statement without a
semicolon, the cursor goes to the next line but you will find that the line you have just
PRINTED gets filled out with green blobs. Look at the previous program. The 16
colours of the flag are each called I. On line I, I want a white blob in row I, column I
and also another one in row I, column 15 - L This worked for the top half of the flag
because I made the blob on the left before the one on the right. But on the bottom
half my blob was wiped out because I made the blob on the left after the one on the
right, so the right hand one was wiped out. We can cure most of it with semicolons:

Know your DRAGON

10 REM SCOTLAND THE BRAVE
20 FOR I=0 TO 510
30 PRINT CHR$ (1 75) ;
40 NEXT I
50 FOR I=0 TO 1 5
6 0 IS=I+3 2*I
70 PRINT@ I S , CHR$ (207) ;
80 JS= (l6-I) +32*I
90 PRINT@ JS , CHR$ (207) ;
100 NEXT I

79

I take the trouble to show this to you because it is the one thing that gives most
trouble when you are trying to make up graphics on the text screen. Always
remember the semicolon to prevent the rest of the line from being wiped out.

Now final improvements. Add the line

1 1 0 GO TO 110

s o that the program never finishes. To stop i t you will have t o push BREAK. Also try
this:

15 CLS 3

80 Yet more colourful

which is something new. Nice? You can now take out lines 20, 30 and 40. The CLS
statement clears the text screen to whatever colour you specify:

line number CLS colour number

The colour numbers are the same as before:

Colour O is black
Colour I is green
Colour 2 is yellow
Colour 3 is blue
Colour 4 is red

Colour 5 is 'burr
Colour 6 is cyan
Colour 7 is magenta
Colour 8 is orange

Try these out in direct mode. You can get the whole text screen cleared to any colour,
but then the 'OK' message spoils it.

3 Your own kaleidoscope

A kaleidoscope is a toy full of little coloured shapes. When you look into it, you see
these reflected in mirrors which repeat the pattern of shapes around several lines of
symmetry. Let us take the left half of the text screen and divide it into eight
segments. If we have a shape in row I, column J, then you can see in the drawing that
we want it repeated in the following places:

111111/ -;._ '

' '
'

Know your DRAGON 81

Place in Row No. Column No. Address
Drawing

I I J J + 32*1
2 J I I + 32*J
3 J 1 5 - 1 (I S-I) + 32*J
4 I 1 5-J (1 5 -J) + 32*1
5 1 5 - 1 1 5-J (1 5 -J) + 32* (1 5-1)
6 1 5 -J 1 5 - 1 (I S-I) + 32*(1 5-J)
7 1 5 -J I I + 32*(15-J)
8 I S - I J J + 32*(1 5-1)

To make the first segment, the area that includes place number 1 in the drawing, we
use a series of shapes from the graphics symbols. We need 36 of these for a segment
- taking them spaced by 5 from the available shapes seems fair. Here goes:

10 REM PHANTASMAGORICAL!
20 CLS 0
30 CH=l28
40 FOR 1=0 TO 7
50 FOR J=0 TO I
60 PRINT@ J+32*I , CHR$ (CH) ;
70 PRINT@ I+32*J, CHR$ (CH) ;
80 PRINT@ (1 5-I) +32* J , CHR$ (CH) ;
90 PRINT@ (15-J) +3 2 * I , CHR$ (CH) ;
100 PRINT@ (1 5-J) +32* (1 5-I) , CHR$ (CH) ;
1 10 PRINT@ (15-I) +3 2* (1 5-J) , CHR$ (CH) ;
1 20 PRINT@ 1+32* (1 5-J) , CHR$ (CH) ;
130 PRINT@ J+32* (15-I) , CHR$ (CH) ;
140 CH=CH+3
150 NEXT J
160 NEXT I
l 70 GO TO 170

Furthermore you can make the colours shift and dance forever.

Add

30 FOR MH=l28 'rO 143 STEP 5
35 CH=MH

which replaces tine 30, and also

165 NEXT "1H
170 GO TO 30

and run it again.

82 Yet more colourful

4 Sailing, sailing, over the ocean blue - animation

For animation, you draw something on the screen and then make it move. You have
to be careful about semicolons and things to avoid the nasty green lines. Now is the
time to make Queen Fiona I I steam across the text screen in stately (well, lurching)
fashion by changing the program from page 75.

First of all, make the whole text screen the colour of the sea by adding

10 CLS 3

and colour the sky cyan - which isn't a bad sky colour if your set is adjusted
properly, using

12 FOR 1=0 TO 319
14 PRINT @ I , CHR$ (223) ;
16 NEXT I

You could try the program with these few changes, and you will see why we have to
go to a lot of trouble to avoid the green. TAB makes green shapes, and you get one at
the end of every PRINT statement unless there is a semicolon.

Now we put the drawing of the QF II in a loop with the variable NO taking values
from 1 to 19 to represent which column her stern is in as she moves.

25 FOR NO=l TO 19

230 NEXT �O

Each time around the loop we deposit a blob of cyan - character number 223 -
which rubs out the stern from the last time. Every line has to be started by PRINT @
instead of TAB, and every line has to end with a semicolon to avoid green stripes. At
the end, put

240 GO TO 240

so it will halt without spoiling the picture. Here is the modified program so far:
10 CLS 3
12 FOR 1=0 TO 319
14 PRINT @ I , CHR$ (223) ;
16 NEXT I
2 0 REM THE SMOKE
25 FOR NO=l TO 19
30 PRINT @ 195+NO , CHR$ (207) ;
40 REM THE FUNNEL
50 PRINT @229+NO, CHR$ (223) ; CHR$ (192) ;
60 REM THE TOP DECK
70 PRINT @257+NO , CHR$ (223) ; CHR$ (19 3) ;

Know your DRAGON 83
80 PRINT CHR$ (195) ; CHR$ (19 5) ;
90 PRINT CHR$ (195) ; CHR$ (1 95) ;
100 PRINT CHR$ (19 5) ; CHR$ (194) ;
110 REM THE MI ODLE DECK
120 PRINT @ 287+NO, CHR$ (2 2 3) ; CHR$ (193) ; CHR$ (195) ;
130 PRINT CHR$ (199) ; CHR$ (201) ;
140 PRINT CHR$ (207) ; CHR$ (2 01) ;
150 PRINT CHR$ (207) ; CHR$ (201) ;
160 PRINT CHR$ (203) ; CHR$ (1 9 5) ;
170 PRINT CHR$ (1 9 5) ; CHR$ (195) ;
180 PRINT CHR$ (193) ;
190 REM WATERLINE
195 PRINT @ 319+NO, CHR$ (175) ;
200 FOR I=l TO 12
210 PRINT CHR$ (163) ;
220 NEXT I
230 NEXT NO
240 GO TO 240

Try it! Great. You have to push BREAK to stop it.

A bit more fun is added if the paddle wheels seem to turn. The paddle wheels were
originally drawn using CHR${201). Now if character number 198 was used instead
whenever NO was even, the wheels would appear to spin. Look at this change:

125 NC=l98+3* (NO-INT (N0/ 2) * 2)
1 3 0 PRINT CHR$ (199) ; CHR$ (NC) ;
140 PRINT CHR$ (2 07) ; CHR$ (NC) ;
150 PRINT CHR$ (207) ; CHR$ (NC) ;

Try it. Fantastic! Do you see how it works? I am using the remainder when NO is
divided by 2 to give me CHR$(198) when NO is even and CHR$(201) when it is odd.

You might also like the QF II to give a blast on her whistle before she starts moving:

224 IF NO> 1 THEN 230
226 SOUND 1, 20

The whole program with these last changes is called BOATING on the cassette.

S Another way lo make symbols - SET and RESET

We have seen how to use the PRINT @ statement of Colour BASIC, which gives
complete control of where symbols are printed on the text screen. On the DRAGON,
this is the most common way of making pictures. Sometimes, however, it may be
more convenient to use the SET and RESET statements introduced here. SET can
turn on a blob of colour anywhere on the text screen, and RESET turns it off.
Although it may be more convenient, it is a bit slower than PRINT @, as will be

84 Yet more colourful

demonstrated.

You will have noticed that each graphics symbol that can be used with the CHR$
function has four little blobs that make it up. The SET command lets you turn on any
little blob in (almost) any colour you want. With SET, the text screen has 32 rows of
64 blobs - four times as many as were used with PRINT @. You write

SET(Column number, row number, colour number)

0 to 63 0 to 3 1 0 to 8

The colour numbers are the same as before:

Colour O is black
Colour 1 is green
Colour 2 is yellow
Colour 3 is blue
Colour 4 is red

Colour 5 is 'buff
Colour 6 is cyan
Colour 7 is magenta
Colour 8 is orange

Try this as a direct command. Push CLEAR to clear your screen first, then enter

SET (30,14,3)

Now enter also

SET (31 , 1 5,3)

Very handy. This looks the same as putting

PRINT @ 239, CHR$(I 37)

But there are limitations. You will notice that it isn't red on green - there are black
dots as well. SET will always give a colour and black. You are working on the same
text screen position as with PRINT @, but are setting on as many little blobs as you
need - but you have to put up with the rest of the screen position being black. What
you have just done is illustrated by this drawing:

SET(JO, I 3,3)

Black

Black

SET(3 1 , 1 5,3)

Screen position 239
(Row 7 Column 1 5)

Another limitation is that you can't make the little blobs in one screen position

Know your DRAGON

different colours. Clear the screen (by pushing CLEAR) and try this:

SET (30,14,J)
SET (3 1 , 1 5,4)

85

Oh dear. The first one was blue, but the second one turned it all red. So why does
this next one work?

SET (J0,14,3)
SET (29, 1 5 ,4)

It works because the text screen positions referred to are next to each other.
Confused? Look at this little drawing:

SET Screen position 239 m· .. ,,
Screen position SET(30, 14,3)

238
Row 7 Column 14

So you can only have black and a colour in any text screen position. This means that
you can build al! the same things that you could do with the graphics symbols and
PRINT @, and nothing more. So why use it? Sometimes it just happens to be easier.
But it is a bit slower.

This program takes 32 seconds to draw a row of thingies 50 times:

10 FOR T=l TO 5 0
2 0 FOR K-0 T O 63 STEP 2
30 SET (K+l , 20 , 3)
4 0 SET (K , 21 , 3)
5 0 NEXT K
60 NEXT T

This one does the same in 18 seconds

10 FOR T=l TO 5 0
2 0 FOR K=320 T O 3 5 1
30 PRINT @K, CHR$ (1 6 6)
4 0 NEXT K
50 NEXT T

Can you see why this one is slightly faster, in 15 seconds?

86

10 FOR T=l TO 50
2 0 PRrnT @320, CHR$ (1 66 } ;
30 FOR K= 3 2 1 TO 351
40 PRINT CHR$ (1 6 6 } ;
50 NEXT K

60 NEXT T

Yet more colourful

As an example, we will make a big red spiral on your text screen. We start rrom a red
dot in the middle, and spiral outwards: right one place, up two places, left three places,
down four places, right five places and so on. To set the first blob in the middle, put

20 CLS 0 50 Y=l5
30 REM RED BLOB IN MIDDLE
40 X=32

60 SET (X , Y , 4)

In making the spiral, w e simply adjust the values o f X and Y.

To move right put
To move up put
To move left put
To move down put

x-x+1
Y-Y-1
x-x-1
Y-Y+ I

We'll do this in a loop for each round of the spiral with four sections inside it: right,
up, left, down. Here it is

10 REM DON ' T FALL IN
20 CLS 0
30 REM RED BLOB IN MIDDLE
40 X=32
50 Y=l 5
60 SET (X , Y , 4)
7 0 REM NOW SPIRAL
80 FOR RQ::l TO 25 STEP 4
90 REM GO RIGHT, YOUNG PERSON
100 FOR I=l TO RO
110 X==X+l
120 SET (X , Y , 4)
130 NEXT I
140 REM UP , UP AND AWAY
150 FOR 1::::1 TO RO+l

160 Y=Y-1
170 SET (X, Y , 4)
1 8 0 NEXT I
190 REM NOW TO THE LEFT
200 FOR I=l TO RO+2
210 X=X-1
220 SET (X , Y , 4)
2 3 0 NEXT I
240 REM AND FINALLY DOWN
250 FOR I=l TO RO+3
260 Y=Y+l
270 SET (X , Y , 4)
280 NEXT I
290 NEXT RO
300 GO TO 300

The program deliberately sticks at line 300 to preserve the display. Push BREAK to
stop it.

You might like to try some variations on this yourself. Make different arms of the
spiral different colours. What happens at the corners? Try making every dot a
different colour - you can't, can you? Do you remember why? If you tried doing all
of this using PRINT @, you would find that you could, but I think you would also find

Know your DRAGON 87

it more difficult. SET is easier to use when you are pushing a dot around the text
screen because the (X,Y) position is more convenient to work with than the text screen
address that you have to work out with PRINT @. Now add this to the program:

105 RESET (X , Y)

1 5 5 RESET (X , Y)

2 0 5 RESET (X , Y)

2 5 5 RESET (X , Y)

Well! Now i t looks a s i f you have a n insect fluttering around on your screen, and
that's exactly what we'll use it for a bit later on. The statement

line number RESET (column number, row number)

works exactly like SET except that it removes the blob from X, Y - and knows what
colour to leave behind. This clearly has a lot of possibilities for animation.

6 What's the POINT?

You might want your program to look at the screen to find out what is in a particular
text screen position already. You can do this using a function called POINT. Using
the same row and column numbers as with SET, you can ask the computer to tell you
what is there. You use the function

POINT (column number, row number)

0 to 63 0 to 31

which gives you a value

- I if it's a character
0 if it's blank
the colour code if it's a blob of colour

Remember that this is a function, so that it is not a complete statement on its own.
You could do this:

10 CLS
20 PRINT@2 3 9 , CHR$ (1 3 7)
30 PRINT POINT (3 0 , 14) ; POINT (3 1 , 1 4)
4 0 PRINT POINT (30 , 1 5) ; POINT (3 1 , 1 5)

This is a little program t o check the truthfulness of what I told you a little while ago
about the relationship between SET and PRINT @. Was it correct? Don't be lazy -
check it oul.

88

Thirteen

TWO SCREENS
FOR THE
PRICE OF TWO

1 What's that again?

Two screens for the price of two

One of the things that makes the DRAGON 32 such a good value is the Extended
Colour BASIC. With it you get a whole new screen, the 'graphics screen' and a lot of
advanced facilities in BASIC to help you use it. So the next two chapters are all
about the graphics screen, and how to use it.

2 The two screens - the SCREEN statement

Until now, you have used the 'text screen'. The PRINT statement always uses it, and
the PRINT @ statement lets you print wherever you want in the 16 rows and 32
columns of the text screen. With the SET and RESET statements you discovered that
you could use the text screen as if it had 32 rows and 64 columns although it turned
out that this really was the same old 16 rows and 32 columns in disguise.

Now you will find that there is a 'graphics screen' as well - hiding inside your
computer waiting to be let loose. The graphics screen has up to 192 rows and 256
columns, but there is a choice of resolutions and colours. Using the graphics screen,
you can make pictures in much more detail. Here's what you really have:

Two Screens
On each Screen
On the Graphics Screen

- Text and Graphics
- Two Colour Sets
- Four different resolutions

So let's have a look at them. Normally you are looking at the text screen, although
the graphics screen always lurks invisibly inside. The 5CREEN statement allows you
to choose:

Know your DRAGON

line number SCREEN screen number, colour set

0 or I O or I

89

You can do this in direct mode but it won't help you much - it will all happen so fast
that you can't see it. Here are some little demonstrations.

Normally you are looking at SCREEN 0,0 which is the text screen with black and
green display. You could get SCREEN 0,1 which is the text screen again, with a
black and orange display. Try this:

10 SCREEN 0 , 1
2 0 GO TO 20

Youch! There it is. Now push BREAK. You will see that you can only hold colour
set I on the text screen when a program is running. You get forced back to SCREEN
0,0 whenever a program ends, or whenever a PRINT or PRINT @ statement is
executed. Try this:

10 SCREEN 0 , 1
2 0 PRINT " WHAT COLOR?"
30 GO TO 3 0

You will see that, despite the SCREEN statement, the PRINT has forced you back to
colour set 0. If you put SCREEN after PRINT, you get what you want:

10 PRINT "WHAT CO LOR? "
20 SCREEN 0 , 1
3 0 GO TO 3 0

S o what i f the thing you printed was a coloured graphics symbol? Well, i t doesn't
matter, it will stay there. Do this:

10 SCREEN 0 , 1
20 FOR I=l TO 500: NEXT I
30 FOR J= l28 TO 255
40 PRINT CHR$ (J) ;
50 NEXT J
60 SCREEN 0, 1
70 GO TO 7 0

Isn't that nice. The graphics stay untouched while the colour set for text i s switched
back and forth. The PRINT @ statement behaves the same way - it switches the
colour set back to green but any coloured graphics will not be touched.

The SET and RESET statements do not affect the colour set in use:

90

10 SCREEN 0 , 1
20 FOR X=0 TO 3 1
3 0 FOR Y=0 T O X
40 SET (X , Y , 3)
50 NEXT Y
60 NEXT X

Two screens for the price of two

70 FOR X=32 TO 63
80 FOR Y=0 TO 6 3 -X
90 SET (X , Y , 5)
100 NEXT Y
1 1 0 NEXT X
120 GO TO 120

Remember that all these demonstrations have been on the text screen:

line number SCREEN 0, colour set

0 or I

selects the text screen with

colour set 0 - black on green
colour set I - black on orange

3 Now the graphics screen

Try this:

10 SCREEN 1 , 1
20 GO TO 20

Say! This is something new - is it a bird, or a plane - no, it's the graphics screen!
Push break to stop it. You could also try

When you use

10 SCREEN 1 , 0
20 GO TO 2 0

line number SCREEN I , colour set

0 or I

you turn on the graphics screen. Actually there are several ways this might turn out,
because you have a choice of resolutions and it affects the colour set. We'll worry
about that a bit later. First lets put something on the graphics screen. We use PSET:

line number PSET (column, row, colour)

0 to 255 0 to l 9 1 0 to 8

Know your DRAGON 91

NoLice how this resembles the SET we used on the TEXT screen. The big difference
is in the resolution; 0-255 is a lot or columns! Your graphics screen is divided into a
loL of little cells which the smarties call 'pixels' - I guess that is short for 'picture
cells'. There are actually 256x 192 or these - or 49, I 52. If you're using th.� highest
resolution, this is 4 times as many columns as you could get blocks on the text screen
using SET.

You will not be surprised that the statement

PCLS colour number

clears the whole graphics screen to the colour you ask for. Let's try something

10 SCREEN l, l
20 PCLS 0
30 FOR Y=l TO 63
40 FOR X=Y TO 6 3

5 0 PSET (X , Y , l)
60 NEXT X
70 NEXT Y
80 GO TO 80

It takes a while, but you will get a diagonal flag in two colours in the corner of the
screen. You can see that this will make better pictures than the text screen because
the zigzags are smaller.

Now explore the colour sets. This program makes stripes:

10 SCREEN l , l
2 0 PCLS l
30 Y=0
40 FOR C=0 TO 8
50 FOR YY=l TO 4
60 Y=_Y+l

70 FOR X=0 TO 255
80 PSET (X,Y, C)
9 0 NEXT X
100 NEXT YY
1 1 0 NEXT C
1 2 0 GO TO 120

Oh! Do you see how this works? Expect 8 stripes or depth 4 pixels each, and each a
different colour. But you didn't get 8 colours, did you? You will get either 4 or 2
depending on the resolution. Now change line 10 to

10 SCREEN l , 0

and run it. A different colour set, but still not 8 or them. Let's explain. There is a
statement to let you select the resolution, called PMODE. Once you have selected a
resolution, your colour sets are fixed. PM ODE is like this:

line number PMODE resolution, page

0 to 4 I to 8

Forget about the 'page' for now and use page I. Here is what you can have

PMODE resolution,!

92

Resolution
code

Two screens for the price of two

Resolution on Colours Colours
set I graphics screen set 0

columns x rows

128x96

128x96

128x192

128xl92

256x I 92

0,2,4,6,8-black 0,2,4,6,8 - black
1,3,5, 7 = green 1,3,5, 7 = buff

0,4,S =red
l,5 =green
2,6=yellow
3,7 =blue

0,4,8 =orange
1,5- buff
2,6=cyan
3, 7 = magenta

0,2,4,6,8- black 0,2,4,6,8 - black
1,3,5,7=green l,3,5,7=buff

0,4,S = red
1,S=green
2,6=yellow
3,7=blue

0,4,S =orange
1,5-buff
2,6=cyan
3,7=magenta

0,2,4,6,8-black 0,2,4,6,8-black
1,3,5, 7 = green 1,3,5, 7 = buff

When you first switch on the DRAGON, you get PM ODE 0,2. Now try the program
that makes stripes with

5 PMODE 3 , 1

and look at both colour sets by changing SCREEN. Refer to the table and try other
PMODE and SCREEN combinations. Go over this section until you understand the
interaction of PMODE and SCREEN. You always use PSET with column numbers
from 0-255 and row numbers from 0- 192 even though you can only get at all the
pixels individually using PMODE 4, I. Using PM ODE I, I program STRIPES could
have had

50 FOR YY= l TO 2
60 Y=Y+ 2

because it can only set the pixels in groups of 4. This is a bit like the difference
between SET and PRINT CHR$() on the text screen, except that on the graphics
screen any pixel you address can be any available colour.

Now with lines 50 and 60 changed as above, try

5 PMODE 3 , 1
10 SCREEN 1, 1

Know your DRAGON 93

Do you see why the lines aren't solid any more? Try

10 SCREEN 1 , 0

like this. Red doesn't show u p very well on green, does it? Notice that the colour
numbers that you are used to wilt all give you the right colours if you are using a
colour set that they belong to.

4 Jose, can you see? - PRESET

We would like to draw Old Glory - red, white and blue. But these colours aren't in
the same colour set. I'll use cyan, buff, and orange. In the flag, I want the stars to be
a group of buff pixels surrounded by cyan, 6 pixels high:

+
I can use 128x96 resolution using 4 colours:

10 REM JOSE CAN YOU SEE?
20 PMOOE 1, l
3 0 SCRl!:EN l , l

First I'll draw I 3 stripes representing the I 3 colonies, then a solid block of cyan, and
finally the stars - there are 5 rows of 6 stars, and between them 4 rows of 5 stars.

Here's the program, first the stripes. I make sure there isn't anything on the screen
first

40 REM DEFINE COLORS
50 R=4
60 8=2
70 ·.'i=l
80 REM CLEAR THE SCREEN
90 PCLS W
100 RE."! DRAW RED STRIPES
110 REM FIRST 3 NARROWER
120 FOR ST,,.0 TO 48 STEP 24
1 3 0 FOR RO:a0 TO 10 STEP 2
140 FOR CO=l08 TO ,254 STEP 2
150 PSET (CO, ST+RO , R)

Now make a solid block o f blue:

160 NEXT CO
1 70 NEXT RO
180 NEXT ST
190 REM REMAINING 4 FULL WIDTH
200 FOR ST=72 TO 152 STEP 24
210 FOR R0=0 TO 10 STEP 2
220 FOR C0=0 TO 254 STEP 2
230 PSET (CO, ST+RO, R)
240 NEXT CO
250 NEXT RO
260 NEXT ST

94

270 REM THE BLUE SKY
280 FOR R0=0 TO 72 STEP 2
290 FOR C0=0 TO 106 STEP 2

Two screens for the price of two

300 PSET (CO , RO , B)
3 1 0 NEXT CO
320 NEXT RO

To put in the stars, we use a new statement

line number PRESET (column, row)

0 to 255 0 to l 9 1

and I think you can guess what i t does - i t i s just like RESET o n the text screen.
PRESET clears the pixel at (column, row) to the background colour, which at the
moment is buff - just what we want. The centre of the stars is going to be at
(CO,RO) in the loops, and the four pixels next to this are also reset. First the 5 rows
of 6:

3 30 REM 5 ROWS OF 6 STARS
340 FOR RO=l2 TO 60 STEP 12
350 FOR CO=l2 TO 92 STEP 16
360 PRESET (CO , RO)
370 PRESET (C0+2, RO)

and then the ones in between:

430 REM AND 4 ROWS OF 5 STARS
440 FOR RO=l8 TO 54 STEP 1 2
450 FOR C0=20 TO 8 4 STEP 1 6
460 PRE SET (CO, RO)
470 PRESET (C0+2,RO)
480 PRESET (C0-2 , RO)

3 8 0 PRESET (C0-2,RO)
390 PRESET (CO, R0+2)
400 PRESET (CO, R0-2)
410 NEXT CO
420 NEXT RO

490 PRESET (CO, R0+2)
500 PRESET (CO , R0-2)
5 1 0 NEXT CO
520 NEXT RO
530 GO TO 530

See how the stars are born? Wow! Hand on heart, and repeat after me:

'I pledge allegiance .

Now try the other colour set. In the program, I called R, W, and B by colour
numbers, so you don't have to change much. Whoops! All that green. Try this:

35 COLOR 2 , 2

this sets the 'foreground' and 'background' colours both to yellow in colour set 0 with
PMODE resolution I or 3. We'll see what 'foreground' means in the next chapter.
The statement

line number COLOR foreground, background

can be useful. On the graphics screen you always have the same as

Know your DRAGON

line number COLOR 1,8

if your program doesn't change this with a COLOR statement.

EXERCISE:
If you live somewhere else, make your own flag. If you live in the USA,
make the British flag - now that's really a tough one! Add music.
That's right - you can splice on the music program from page 68 and
put your national anthem in DATA statements.

95

96

Fourteen

LINES AND
CIRCLES

1 Straight and Narrow

Lines and circles

We can already make lines. A magenta horizontal line on the buff graphics screen
could be:

10 REM HORIZONTAL LINE
20 PMODE 1 , 1
30 SCREEN 1 , 1
40 PCLS 1

50 FOR X=64 TO 1 9 1
60 PSET (X , 3 2 , 3)
7 .-;3 NEXT X
80 GO TO 80

Let's remind ourselves of how it works. The PM ODE statement selects the resolution
(I 28x96 with 4 colours) and the page which we're not worried about until later in this
chapter. The SCREEN statement turns on the graphics screen and selects colour set
I (orange, buff, cyan, magenta). PCLS clears everything on the screen to buff, and
then the FOR . . . NEXT loop makes a line running along most of the screen. We
could make a similar program draw a square magenta box with a cyan cross in it:

10 REM X MARKS THE SPOT
20 PMODE l, l
30 SCREEN 1 , 1
40 PCLS 1
50 FOR X=64 TO 1 9 1
60 PSET (X , 3 2 , 3)
7 0 PSET (X , 1 5 9 , 3)

8 0 PSET (64 , X- 3 2 , 3)
9 0 PSET (l 9 1 , X- 3 2 , 3)
100 NEXT X
1 1 0 FOR X=64 TO 1 9 1
1 2 0 PSET (X , X- 3 2 , 2)
1 2 5 PSET (2 5 5 -X , X- 3 2 , 2)
1 3 0 NEXT X
140 GO TO 140

Notice in this program that the programmer has really had to think about the drawing
of each point on the line. If he hadn't been clear, six FOR. NEXT loops would
have been needed. You can see that to draw any line which is not either horizontal,
vertical, or diagonal is going to be even more difficult this way. And notice that it
isn't very fast.

Know your DRAGON 97

Extended Colour BASIC has a special statement for drawing lines on the graphics
screen which makes it easy for you. You can write

line number LINE(column I, row I) - (column 2, row 2), PSET

and the line will get drawn. As usual you can choose any of columns 0-255 and rows
0- 1 9 1 of the graphics screen. Try this:

l" REM HORIZONTAL LINE
20 PMODE 1, l
30 SCREEN l , l
40 PCLS l
50 LINE (64 , 32) - (191 , 32) , PSET
60 GO TO 60

Fast, isn't it! But the line is orange. Remember the CO LOR statement:

line number CO LOR foreground, background

Now we can see what the foreground colour is for. The LINE statement with PSET
in it draws the line in the foreground colour. You can also have PRESET:

line number LINE(column I, row I) -(column 2, row 2), PRESET

which will draw a line in the background colour. So try this: _

10 REM BUILDING UP
20 PMODE l , l
30 SCREEN l , l
40 PCLS l

50 COLOR 3 , 2
6 0 LINE (64 , 3 2) - (191 , 32) , PSET
70 LINE (64 , 3 2) - (l9 1 , l 5 9) , PRESET
80 GO TO 80

If you run this, you will see magenta and cyan lines drawn on a buff background - so
fast you can't see it happen. I think you know what we're building up to. Here is the
X in the box drawn using LINE:

10 REM X MARKS THE SPOT
20 PMODE 1, l
30 SCREEN 1, l
40 PCLS 1
50 COLOR 3, 2
60 LINE (64, 3 2) - (191, 3 2) , PSET

But we can be even fancier. If you use

70 LlNE (l91 . 32) - (19 1 , 159) , PSET
80 LINE(l91, 1 5 9) - (64 , 1 59) , PSET
90 LINE(64, 159) - (64 , 3 2) , PSET
100 LINE(64, 3 2) - (1 91 , 1 59) , PRESET
llij LINE (l9 1 , 32) - (6 4 , 1 59) , PRESET
120 GO TO 120

line number LINE(column I , row I) -(column 2, row 2), PSET, B

98 Lines and circles

instead of a line between the points, you will get a box using those points as corners.
So the whole program is:

l 0 REM X MARKS THE SPOT
20 PMODE 1, 1
30 SCREEN 1, 1
40 PCLS l

60 LINE(64, 3 2) - (1 9 1 , 159) , PSET , B
100 LINE (64, 3 2) - { 191 , 159) , PRESET
110 LINE (l 91 , 32) - (64 , 1 59) , PRESET
120 GO TO 120

50 COLOR 3 , 2

Of course you can use PRESET with B. You can also get a solid box by putting BF
instead of B; change line 60 to:

60 LINE (64 , 3 2) - (19 1 , 1 59) , PSET , BF

Great! So here's a summary of LINE:

nothing
PSET or

line number LINE (column I, row 1)-(column 2,row 2), or , B
PRESET or

BF

This joins the screen points given by (column 1, row I) and (column 2, row 2). Where

PSET
PRESET
nothing
B
BF

- uses foreground colour
- uses background colour
- draws a line
- draws a box in outline with points at opposite corners
- draws a box and fills it with colour

The foreground and background colours are set by

line number CO LOR foreground, background
colour colour

where the colours have to be chosen by the colour set in use.

It would be fun to see the effect of PM ODE on the lines. Experiment with line 20 of
the program that draws the box. You will see that with higher resolution you get
better lines - of course. They are particularly good with PM ODE 4,1.

2 Are you still there, Jose

Remember how slowly the star spangled banner was drawn? We can do it all with
LINE. Each orange stripe is a box full of colour, and so is the blue part. It certainly
makes the program shorter:

Know your DRAGON

10 REM JOSE CAN YOU SEE?
20 PMODE l, l
30 SCREEN l, l
40 REM DEFINE COLORS
50 Rz4
60 B=2
70 W=l
75 COLOR R,W
80 REM CLEAR THE SCREEN
90 PCLS
100 REM DRAW RED STRIPES
110 FOR ST•0 TO 144 STEP 24
120 LINE(0, ST)- { 2 54, ST+l2) , PSET, BF
130 NEXT ST
270 REM THE BLUE SKY
280 COLOR B,W
290 LINE (0 , 0) - (l06, 7 2) , PSET,BE"
330 REM 5 ROWS OE" 6 STARS
340 <"OR RO•l2 TO 60 STEP 12
350 E"OR CO•l2 TO 92 STEP 16

360 PRESET (CO, RO)
370 PRESET (CO+2 , RO)
3 8 0 PRESET (CO-2,RO)
390 PRESET (CO, RO+2)
400 PRESET (CO, RO-2)
410 NEXT CO
420 NEXT RO
430 REM AND 4 ROWS OE" 5 STARS
440 E"OR RO=l8 TO 54 STEP 12
450 FOR CO=20 TO 84 STEP 16
460 PRESET(CO,RO)
4 70 PRE SET (CO+2 , RO)
480 PRESET (CO-2,RO)
490 PRESET (CO , RO+2)
500 PRESET (CO, RO-2)
510 NEXT CO
520 NEXT RO
530 L1NE (0 , 0) - (2 5 4 , 1 56) , PSET , B
540 C O T O 540

99

And much faster! The stars are still drawn the old way. You will see that there are
two COLOR statements here, one near the beginning which makes the foreground
orange and the background white, and the one at line 280 which makes the foreground
cyan and the background white. The PCLS statement at line 90 has no colour:

line number PCLS colour number

clears the screen to the given colour number but

line number PCLS

clears the screen to the background colour, which in this case is white.

You will also see that at line 530, a box is drawn around the flag to improve it
slightly.

3 Rolling, Bouncing, and Heavy Breathing

Extended Colour BASIC has a fast and convenient statement for drawing circles on
the graphics screen - very fast and convenient:

line number CIRCLE (column, row), radius, colour

0 to 255 0 to 191

The circle is drawn with its centre in the column and row specified, with the radius
asked for and in a choice of colours. Try this little program and see:

10 REM JUST ONE CIRCLE
20 PMODE l, l
30 SCREEN 1, l
40 PCLS

100 Lines and circles

50 CIRCLE(l27 , 9 5) ,64, 3 , l , 0 , l
60 G O TO 60

Quite a good circle, really. If you think it's a bit jagged, it's because of the resolution
- the computer does the best it can with the screen resolution you ask for in
PMODE. In this case, we have a resolution of 128 by 192 pixels. As you know,
different PMODES will give higher or lower resolution. The highest would be

20 PMOOE 4 , 1

but then only two colours are available. If you change line 20 in the above example,
you will get a very nice black circle on a green background.

Here is a sc_reen full of circles:

10 REM TAKE ONE BEFORE MEALS
20 PMOOE 3, 1
30 SCREEN 1 , 1
40 PCLS

50 FOR Y=l5 TO 175 STEP 32
60 FOR X=l5 TO 239 STEP 32
70 CIRCLE (X , Y) , 1 2 , 4
8 0 NEXT X
90 NEXT Y
100 GO TO 100

and if you make the circles overlap, it comes out like a golden tapsetry of finest silk:

70 CIRCLE (X , Y) , 24 , 4

Know your DRAGON IOI

Also try it with PM ODE 4,1 - but change the colour of the circles to an odd number.

CIRCLE is fast enough to try some animation. Here a circle rolls across your screen:

10 REM ROLLERBALL
20 PMODE 4 , l
30 SCREEN 1, l
40 PCLS

50 FOR X-1 TO 2 5 5 STEP 16
60 CIRCLE (X, 83) , 1 2 , l
7 0 NEXT X

Well, actually you get a trail of circles. If you want the impression of one circle
moving, you'll have to wipe out each old one. If you put this statement in, the old ones
are wiped before the new ones are drawn:

55 PCLS

or, instead you could use

65 CIRCLE (X-16 , 83) , 1 2 , 2

which removes the old circle after the new one is drawn by going over it again in the
background colour. Which do you think is best?

And now the bouncing. Do yo'u remember old Newton? No, not the one who played
Long John Silver - the scientist Isaac Newton. Quite a smartie, he was. One day,
the story goes, an apple fell on his head which made him recognize the gravity of the
situation. Ugh! Anyway, a bouncing ball obeys laws of motion identified by Newton.
If you drop an object, it falls with constant acceleration (ignoring wind resistance),
and the distance it travels in metres, called d, is given by a formula

d = 4.9 t 2

where t is the time in seconds since you dropped it. If we're smart and drop a ball at
the top of the graphics screen and pretend that the screen is about 3 I 3 metres high,
then the ball falls as shown by this little table.

After this
no. of seconds

I
2
3

The ball has
reached this row

2
I I
26
47
74
107
146
191

Too cunning. I've manipulated things so that

102 Lines and circles

Row Number = 3 t2 - I

The ball hits the bottom of the screen at 8 seconds. Because of another of Newton's
laws it will bounce back again - a really good superball will bounce right back to the
top of the screen, getting there after 16 seconds. Lets have the ball moving slowly to
the right at the same time - Newton says that this motion will go on forever. We'll
have it cross the screen in 16 seconds. Here is this highly scientific demonstration -
all three of Newton's laws in one little program:

10 REM AN APPLE A DAY
20 PMODE 4, l
30 SCREEN l , l
40 PCLS
50 FOR T=l TO 8
60 RO=3*T*T-l
70 CO=l6*T-9
80 CIRCLE (CO , RO) , 12 , l

90 NEXT T
100 FOR T=9 TO 16
110 TT=l 7-T
120 RO=3*TT*TT-l
130 CO=l6*T-9
140 CIRCLE (CO , RO) , 12 , l
150 NEXT T
160 GO TO 160

Have you been waiting for the heavy breathing? I hope you are not disappointed.
First of all, the CIRCLE statement can draw circles which are squashed nat from
above or from the side. Actually they're 'ellipses'. You can make the ratio of the
height to width of the 'circle' anything from 0.0 to 4.0:

line number CIRCLE (column, row), radius, colour, shape

where 'shape' is the height to width ratio as in the drawing:

rD �
_D CJ

So run this next little program. You get a screen with 12 circles, not unlike program
CIRCLES, but each is a different shape. The height to width ratios are 0 (a straight
line), 0.25, 0.50, 0.75, 1.0 (a circle) and so on.

10 REM LOTS OF DIFFERENT SHAPES
20 PMODE 4, l 70 FOR X=31 TO 223 STEP 64
30 SCREEN 1 , 1 8 0 CIRCLE (X , Y) , 12 , l , SH
40 PCLS 90 SH=SH+0 , 25
50 SH=0 , 0 100 NEXT X
60 FOR Y�3 1 TO 159 STEP 64 110 NEXT Y

120 GO TO 120

And here's the panting part. You can make a shape that breathes. How's i t done? A
series of circles is drawn with the height to width ratio gradually changing. Then
they're taken away by drawing over the top in black. Inhale, exhale, inhale,
exhale .

Know your DRAGON

10 REM HEAVY BREATHING
20 PMODE 2, l
30 SCREEN 1 , l

80 NEXT J
90 FOR J=l0 TO 0 STEP -1
100 SH=J/10

103

40 PCLS
50 FOR J=0 TO 1 0
60 SH=J/10

1 1 0 CIRCLE (l27 , 96) , 64 , 2 , SH
120 NEXT J
130 GO TO 50

70 CIRCLE(1 27 , 96) , 64, l , SH

4 And there's more, too

There is still more to the circle statement. You learned how to make a circle:

line number CIRCLE (column, row), radius, colour

and also to draw a 'squashed circle' or ellipse:

line number CIRCLE (column, row), radius, colour, shape

You can also draw any part of a circle:

line number CIRCLE (column, row), radius colour, shape, start, end

A whole circle has start= 0 and end= I, like line 50 in

10 REM JUST ONE CIRCLE
20 PMODE 1, 1
30 SCREEN 1 , 1
40 PCLS
50 CIRCLE (1 27 , 96) ,64, 3 , l , 0 , l
60 GO TO 60

You can draw the bottom half of a circle by putting instead:

50 C IRCLE (l 27 , 9 5) ,64, 3 , l , 0 , , 5

or the top half:

50 CIRCLE (l 27 , 9 5) ,64, 3 , l , . 5 , l

104

O
end

1.00
0.50

0.00
start

Lines and circles

As the little diagram shows, the right hand edge of the circle is 0 and also I. When
you draw a circle, the circle starts at 'start' and goes clockwise to 'end'. Therefore the
bottom is J /4 of the way around, the left side is I /2, the top is 3/4 and at I the circle
returns again to the right hand edge.

The left half of a circle would be drawn by:

50 CIRCLE (l 27 , 95) , 64 , 3 , l , , 25 , . 7 5

T o draw the right half, the DRAGON manual said this wouldn't work:

50 CIRCLE (l 27 , 95) , 64 , 3 , l , . 7 5 , 1 . 25

but it did! The manual says that start and end should both be between 0 and I .
have found that values between 0 and 4 are accepted. However the same half circle
can be drawn by

50 CIRCLE (l 27 , 95) , 64 , 3 , 1 , , 7 5 , , 25

because the computer starts at 'start' and continues on to 'end'. So you can get any
part of a circle you want using the full-blown CIRCLE statement.

Know your DRAGON

Fifteen

GET OUT YOUR
PAINT BRUSH

1 Slap it on

105

The PAINT statement in Extended Color BASIC is very useful and clever. You can
paint the inside of any shape on the graphics screen with any available color, and the
computer works out exactly how far to go:

line number PAINT(column, row), color, border color

When you use this statement, your DRAGON starts rolling on the paint at the
column and row you ask for. using the specified color, and fills an area surrounded by
a border whose color you give. As a simple example, we draw a white circle on a
black background, and then paint it all white.

10 REM IS THIS SOMEONE ' S FLAG?
20 REM WHITE IS FOR PURITY AND
30 REM BLACK IS FOR
40 PMODE 4 , 1
50 SCREEN l , 1
60 PCLS

70 REM DRAW A WHITE CIRCLE
80 CIRCLE (l2 7 , 96) , 64 , l
9 0 REM NOW PAINT I T WHITE
100 PAINT (l 2 7 , 96) , l , l
110 GO TO 110

This next little program is based on an overlapping circle program from the previous
chapter, but paints each circle a different cotor. The result is like a nice old fashioned
patchwork quilt. The original circles are orange, and each new one is painted to an
orange border. Do you see how the remainder is used at statement 110 to keep the
color number CL inside the allowed range. This is set up so that it repeats
0, 1,2,3,4,0, l ,2,3,4,0 and so on - orange is both O and 4 in this color set.

10 REM KEEPS YOU WARM IN WINTER
20 PMODE 3, l
30 SCREEN 1, 1
40 PCLS 3
50 CL=0
60 FOR Y=lS TO 175 STEP 32
70 FOR X,,.15 TO 239 STEP 32

80 CIRCLE(X,Y) , 24 , 4
9 0 PAINT (X , Y) , CL, 4
100 CLzzCL+l
1 10 CL=CL-INT (CL/5) *5
120 NEXT X
130 NEXT Y
140 GO TO 140

And now the Union Jack. Its easier now with PAINT. First a cyan background is

106 Get out your paint brush

drawn. Then St Andrew's flag (for Scotland) is drawn in white. The red St Patrick's
flag (for Ireland) goes on top but it is drawn a bit off centre. St George's cross of
England is last - red on a white background as represented by a white border round
it. We do it all with LINE to give the outlines, and PAINT to fill it in. You can see
that PAINT never makes a mistake even in these complicated crosses.
10 REM BRITTANIA WAIVES THE RULES
20 PMODE 1 , 1
3 0 SCREEN 1 , 1
40 R:4
50 B•2
60 Wzl
70 PCLS 1
80 REM THE DEEP CYAN SEA
90 COLOR W , 8
100 LINE (0 , 0) - (255 , 159) , PRESET, BF
110 REM ST ANDREW ' S WHITE CROSS
120 LINE (2 3 , 0) -(25 5 , 145) , PSET
130 LINE (0 , 1 4) - (2 3 2 , 15 9) , PSET
140 PAINT (0 , 0) ,w ,w
150 LINE (0 , 14 5) - (2 3 2 , 0) , PSET
160 LINE (2 3 , 1 5 9) - (2 5 5 , 14) , PSET
170 PAINT (2 5 5 , 0) ,W ,W
180 PAINT (0 , 1 5 6) ,W ,W
190 COLOR R,W
200 REM ST PATRICK IS TRICKY
210 REM FIRST MAKE A DI.a..GONAL

OK Somebody - do Canada!

220 LINE { 0 , 0) - (2 5 5 , 1 59) , PSET
230 LINE (0 , 15 9) - (2 55 , 0) , PSET
240 REM NOW DRAW AND PAINT ARMS
250 LINE (0 , 9) - (12 7 , 8 8) , PSET
260 LINE (12 7 , 88) - (127 , 79 i , PSET
270 PAINT(0 , 2) , R, R
280 LINE (255 , 150) - (128, 70) , PSET
290 LINE (l 28 , 7 0) - { l 2 8 , 7 9) , PSET
300 PAINT (2 55 , 1 57) , R, R
3 1 0 LINE (l 5 , 159) - (12 7 , 88) , PSET
320 LINE (0 , 1 5 9) - (1 5 , 159) , PSET
330 PAINT (l J , 157) , R , R
3 4 0 LINE (240, 0) - (1 28 , 7 0) , PSET
350 PAINT (242 , 0) , R , R
3 6 0 REM BACKGROUND FOR S T GEORGE
370 LINE (l08 , 0) - (14 7 , 1 59) , PRESET, BF
380 LINE (0 , 64) - (2 55 , 95) , PRESET, BF
390 REM AND THE CROSS ITSELF
400 LINE (l l 2 , 0) - (143 , 1 59) , PSET,BF
410 LINE (0 , 6 8) - (25 5 , 9 l) , PSET,BF
420 GO TO 420

HMM ... I'M rcrso
SIJ� 3 AND6 ®
106im-lER NOW... \ '

Know your DRAGON 107

2 So what's the PPOINT?

The POINT function, in section 6 of Chapter 12, allowed you to look at a place on the
text screen to find out what was there. On the graphics screen, you can do the same
thing with the function PPOINT. If you use the function

PPOINT (column number, row number)

0 to 255 0 to 191

you are given the color code of the graphics position specified. As an example, if you
change line 420 to

420 PRINT PPOINT (l 2 7 , 88)

i n the British Flag program, i t tells you that the graphics cell (127 ,88) had color code
8 in it, which is red in that particular PM ODE. Note that the DRAGON switches to
the text screen to print this. If you're really observant you will notice that the
program originally used color 4 for point (127,88). The table of colors for each
PMODE resolution in section 3 of chapter 13 shows that colors 0, 4, and 8 are
equivalent in PMODE resolution I . You will also notice that you can enter

PRINT PPOINT (127,88)

as a direct command. If you do this after running the program, you will again get
color 8. The British flag is still there on the graphics screen after the program
terminates. It will stay there until you put something else on top of it, or wipe it out
with something like a PCLS command.

3 Thanks for the Memory

Your DRAGON 32 has a lot of memory-that is one reason why it is such a good
value. The maximum amount of memory that is available for you to use for the
graphics screen is 12K bytes. A byte is a piece of memory that can remember one
character or a few pixels. This extra 12K (I K is I 024 bytes) can be used for large
BASIC programs, but its main use is for the graphics screen. This 12K of memory is
divided into 8 'pages' of I .SK each. The graphics screen that you see on your
television is a picture of part of this memory. Here is a little map of the memory:

Used by BASIC

The Text Screen

The Graphics Screen

Page I Uk
Page l Uk

108

l'.ige 3 I.Sk
l'agc 4 l.Sk
l'.igc 5 l.Sk
l'.igc 6 1 .5k
Pagc 7 l.Sk
P.igc 8 I.Sk

Your BASIC Progr.irn

Extended COlor BASIC

Lo1s oro1r.i mcmory

UKrJ by BASIC

Gel oul your paint brush

With the PMODE statement you are given a choice of different resolutions and
numbers of colors. Different PMODE choices use different amounts of memory. You
can see from this table that a higher resolution or a larger choice of colors takes more
memory - from I to 4 pages depending on the combination.

PMODE resolution, I

Resolution Resolution of No. of No. of pages of
chosen screen colors memory used

columns x rows

0 128x96 I
I 128x96 2
2 1 28xl92 2
J 128x192 4
4 256x 192 4

You will be able to see from the memory map that it should be possible for a large
program to take memory away from the graphics pages if it needs to. In fact the
DRAGON normally assumes that you want only pages 1-4 for graphics and it can use
pages 5-8 for your program. However a program has to be fairly large before you
really need to borrow any of these pages no program in this book does this.

So it seems that there is a lot of memory available for the graphics screen that is not
being used. What can we do with it? Well, we can actually make as many different
pictures as we can fit into this part of memory, and then switch back and forth
between them. This is done using the other parameter in the PM ODE statement:

PM ODE mode, page

The 'page' parameter tells the DRAGON which page you want your graphics screen
to use. Mode O requires only one page to make a screen, and so there could be 8
different pictures using mode O in memory at the same time. Mode I uses 2 pages, so
a statement like

PMODE 1,1

Know your DRAGON 109

uses up pages I and 2 of memory. There can be four different pictures in mode 1 or
mode 2. Similarly you can have two different pictures in modes 3 and 4.

So lels use them. First of all a new statement:

line number PC LEAR number of pages

This statement tells the DRAGON how many pages you want to use for graphics,
starting from page no. I. When you turn on a DRAGON, the first four pages are
automatically reserved for graphics. So the DRAGON normally assumes that you are
using pages 1-4 for graphics screens and that pages 5-8 can be used for larger BASIC
programs. This is why we have not needed a PCLEAR statement before, because we
have always used

PMODE mode, I

which starts the graphics screen at page I and can never use more than the four
graphics pages already reserved. But if you switch the computer on and then try

PMODE 3,3

you will get an error message. This is because mode 3 starting at page 3 wants to use
pages 3, 4, 5, and 6. But pages 5 and 6 aren't available because you haven't reserved
them. Remember that you need to use PCLEAR only if you want more than 4 pages
of memory for graphics (or less, if your program is huge).

4 Rolling again and Bouncing again

Using the different graphics pages we can make much better animated graphics than
are possible just by drawing and redrawing pictures in the same page. First of all we
will see a ball rolling back and forth across the screen, hitting the edges as it does.
Using resolution 0, the ball can be represented in 8 different pictures. We then switch
the pictures at a constant rate to give the impression of movement.

10 PCLEAR 8
20 REM MAKE 8 DIFFERENT PICTURES
30 FOR PG = 1 TO 8
40 PMODE 0, PG
50 SCREEN 1, 1
60 PCLS 1
70 REM DRAW AN OUTLINE
80 LINE (0 , 0) - (25 5 , 19I) , PRESET,B
90 REM MAKE THE FLOOR
100 LINE (0 , 1 7 6) - (25 5 , 191) , PRESET, BF
1 1 0 REM AND DRAW THE BALL
120 X-=PG•32-17
130 CIRCLE (X, 144) , 32, 0
140 PAINT tX,144) , 0 , 0
150 NEXT PG
160 REM NOW START ROLLING

170 REM FIRST TO THE RIGHT
180 FOR PG•l TO 8
190 PMODE 0, PG
200 SCREEN l , l
210 FOR T=l TO 20
220 NEXT T
230 NEXT PG
240 REM AND THEN TO THE LEFT
250 FOR PG=7 TO 2 STEP -1
260 PMODE 0 , PG
270 SCREEN 1, 1
280 FOR T:l TO 20
290 NEXT T
300 NEXT PG
310 GO TO 180

110 Get out your paint brush

You will notice the FOR . . NEXT loops at 2 10-220 and 280-290 which do not
appear to do anything. What they do is control the rates at which the pictures are
switched by ta�ing up a certain amount of time. If you were to decrease the top limit
of the loop, the ball would move faster; if you increased it, the ball would be slower.

You will see that arter each PMODE statement there is a SCREEN statement. If it
wasn't there you would not see the pictures. You could make the pictures in secret
and look at them afterwards. Try changing line 50 to

50 PRINT" NCM I ' M MAKING PICTURE" ; PG

tricky!

After you have run a program, the pictures are still there in the graphics pages until
you run another program or turn the machine off. This means that you could have
one program to make the pictures and another to display them. This would save you
the bother of waiting for the pictures to be made if you wanted to look at them again.
Here's a program to make the rolling balls:

10 PCLEAR 8
20 REM MAKE 8 DIFFERENT PICTURES
30 FOR PG = 1 TO 8
40 PMODE 0, PG
50 PRINT"NOW I ' M MAKING PICTURE" ; PG
60 PCLS l
70 REM DRAW AN OUTLINE
80 LINE (0 , 0) - (2 5 5 , 1 91) , PRESET , B
9 0 REM MAKE THE FLOOR
100 LINE (0 , 1 76) - (2 5 5 , 1 91) , PRESET , BF
110 REM AND DRAW THE BALL
120 X=PG*32-17
130 CIRCLE (X , 144) , 32 , 0
140 PAINT (X ,144) , 0 , 0
150 NEXT PG

and another one to look at them if they're already there:

10 REM DISPLAY 8 PICTURES 100 REM AND THEN IN REVERSE
20 PCLEAR 8 110 FOR PG=7 TO 2 STEP -1
30 REM SHOO THEM IN ORDER 120 PMODE 0, PG
40 FOR PG=l TO 8 1 3 0 SCREEN 1 , 1
50 PMODE 0, PG 140 FOR T=l TO 20
60 SCREEN 1 , 1 150 NEXT T
70 FOR T=l TO 20 160 NEXT PG
80 NEXT 'r 170 GO TO 40
90 NEXT PG
This last program could be used to look at any animation in resolution 0. Here's
another program to make balls that really bounce - and properly too, moving more

Know your DRAGON I l l

slowly a t the top o f the bounce and faster a t the bottom a s under the innuence of
gravity. Remember this from before?

10 REM BOUNCY, BOUNCY
20 PCLEAR 8
30 REM DRAW 8 PICTURES OF BALL
40 REM FALLING UNDER GRAVITY
50 FOR T=l TO 8
60 PRINT " DRAWING IN POSITION" ; T
70 PMODE 0 , T
8 0 PCLS l
90 R0=3*T'*T-l
100 CIRCLE (1 27 , RO) , 12, 0
110 NEXT T

Why don't you make an animated picture and use my program to look at it? How
about a running figure, or a face changing its expression or wiggling its ears.

5 And finally

There is a PCOPY statement which can also be used for animation. It is

line number PCOPY page number TO page number

Obviously you can only copy to a page which has been reserved by PCLEAR. You
can use this for animation by copying different pictures into the page which is being
shown on the screen. Sometimes it can make programs shorter if you're drawing
complicated pictures which are almost the same. Then you PCOPY the part that
doesn't change - the face without the ears - and then just draw the ears.

There are two more graphics statements, ORA W and PUT. ORA W uses character
string variables and is covered in Chapter 23. PUT uses arrays and is covered in
Chapter 24.

112

Sixteen

PURELY BY
CHANCE

I Introducing Randy Random

Purely by chance

Randy Random is a silly fellow. He never knows where he is going next. But he can
be useful, and fun. He is actually a function, called RND. If you write something
like

10 FOR I=l TO 200
20 PRINT RND(10) ;
30 NEXT I

your screen will fill up with apparently unrelated numbers. This is because our friend
RND (for short) is a 'random number generator'. The result of this is always a
number between I and 10 that you can't predict. You can use this for all kinds of
interesting things.

2 Scaling our friend Randy

RND is a function like INT or ABS; it gives you a value when you use it. In the case
of RND, using

RND(X)

gives you a 'random number' between I and X each time you use it. The random
numbers appear to be unrelated and so can be used for all kinds or interesting things.
For example, generating numbers between I and 2 is like tossing a coin. Suppose we
write a program to use I = heads and 2 = tails, like this:

10 REM TOSS A COIN
20 PRINT "WHEN YOU PUSH RETURN"
30 PRINT " I ' LL TOSS A COIN"
40 INPUT X
50 RN:sRN D (2)

60 I F RN"'l THEN 9 0
70 PRINT "IT WAS A TAIL"
80 GO TO 20

90 PRINT "IT WAS A HEAD"
100 GO TO 20

Know your DRAGON 113

The chances are that you don't want a number between I and 2 or 1 and 10. You
may want one between some minimum value and some maximum value. Call the
minimum MN (Minnie Minimum?) and the maximum MX (Maximillian
Maximum?). To get a random integer RN which is always between Minnie and
Maximi[lian, write

line number RN - M N - I + RND(MX-MN + I)

This i s quite easy t o do, a s examples in the next two sections illustrate.

3 Do you like modern music? Neither do I.

I heard an appalling piece on the radio yesterday, so here's my effort at producing a
similarly horrible noise - roll over Rachmaninov! We can do even better (worse?)
than Hans Weiner Henze because our orchestra is not limited to the notes of a
conventional scale. I want a tone in the range 5-244, which I can get from

30 TN=4+RND(240)

and a duration from 1-10, as in

4 0 DR=RND (10)

Here it is. Play on. Give me excess of it that, surfeiting, the appetite may sicken and
so die .

10 REM WELCOME TO THE
20 REM DRAGON CONCERT HALL
30 TN=4+RND(24a)
40 DR=RND (l 0)
50 REM EARWASH
60 SOUND TN, D.R
70 GO TO 30

4 Do you like modern art? Al least it's quiet.

As another example, let's write a program to fill the text screen with random graphics
shapes in random screen positions. The coloured graphics shapes have character
numbers between 128 and 255. So to get a random one, use

CH - 127 + RND(I28)

The screen positions in the PRINT @ statement run from O to 5 1 I , so we use

SC - RND(5 12)- J

Do you understand the - I? Here is the program:

114

10 REM WELCOME TO THE DRAGON
20 REM GALLERY OF MODERN ART
30 CLS
40 CH=l27+RND (l28)
50 SC=RND (51 2) -l
60 REM EYEWASH

Purely by chance

EXERCISE:

70 PRINT@SC, CHR$ (C H)
80 GO T O 4 0

I think these last two programs would go rather well together. Combine
them. The critics would say: 'the brutal juxtaposition of aural and visual
textures indicate the obdurate iconoclasticism of author and composer as
artist.'

5 Shifting colours

When I wrote the kaleidoscope program in Chapter 12, I did not like the obvious
order in which the kaleidoscope produced its blocks of colour. Here, in much the
same program, I use a random graphics symbol at a random place instead of a
predictable one. I suppose you could add some sound if you wanted to:

10 REM PHANTASMAGORICAL !
20 CLS 0
30 CH=l28
40 I=RND (S) -1
50 J=RND (I+l)-1
60 CH=l27+RND (l 28)
70 PRINT@ J+32* I , CHR$ (CH) ;
80 PRINT@ I+32*J , CHR$ (C H) ;
90 PRINT@ (15-I) +32*J, CHR$ (CH) ;
100 PRINT@ (15-J) +32* I , CHR$ (CH) ;
110 PRINT@ (15-J) +32* (15-I) , CHR$ (CH) ;
1 20 PRINT@ (15-I) +32* (15-J) , CHR$ (CH) ;
130 PRINT@ I+32* (15-J) , CHR$ (CH) ;
140 PRINT@ J+32* (1 5-I) , CHR$ (CH) ;
150 GO TO 40

6 The fable of the Bomb and the Buzzing Bee

There is a neutron bomb at column 15 of row 7 on your text screen. A bee is flying
around on your screen. Eventually .

Know your DRAGON

Yail.-1: �ARTEV
S(]MlmiiN6 NOW I , , ,

115

In this program, I use two random numbers to tell me where the bee is going next.
The column number is XB, and it can move one place to the left or right each time (or
not at all). This is done by

90 XB=XB-2+RND (3)

we have to keep the bee on the screen:

100 REM MUST KEEP IT ON THE SCREEN
1 1 0 IF XB > - 1 THEN 1 3 0
120 XB=0
1 3 0 IF XB < 3 2 THEN 160
140 XB=31

The row number, YB, is treated similarly and the address of the bee on the screen for
the PRINT @ statement is calculated from XB,YB as:

2 2 0 SC=XB+32*YB

the bee is shown in yellow:

116 Purely by chance

2 1 0 REM FLASH THE YELLOW BEE
220 SC=XB+32 *YB
230 IF SC=5 1 1 THEN 250
240 PRINT@SC, CHR$ (1 59) ;
250 FOR T=l TO 2 0
260 NEXT T

I'm going to leave a row of dots where the bee has been. There is an explosion when it
eventually gets there.

10 REM UNFAIR TO BUGS
20 CLS 5
30 REM PUT IN THE BOMB
40 PRINT@239, CHR$ (1 91) ;
5 0 REM BEE STARTS AT RANDOM
60 XB=RND(3 2) - l
70 YB=RND (l 6 } - l
8 0 REM BEE MOVES I N X B Y -1, 0 O R 1
90 X8>:XB-2+RND (3)
100 REM MUST KEEP I T ON THE SCREEN
1 1 0 IF XB>-1 THEN 130
120 XBz0
130 IF XB<32 THEN 160
140 XB.:31
150 REM BEE MOVES SIMILARLY IN Y
160 YB=YB-2+RND (J)
1 7 0 I F YB>-1 THEN 190
180 YB=0
190 IF YB<l6 THEN 220
200 YBzlS
210 REM FLASH THE YELLOW BEE
220 SCzXB+32•YB
230 IF SC=Sll THEN 250
240 PRINT@SC , CHR$ (159) ;
250 FOR T=l TO 20
260 NEXT T
270 REM AND LEAVE A DOT BEHIND
280 PRINT@SC,CHR$ (206) /
290 REM HAS THE BEE HIT BOMB 7
300 IF SC><239 THEN 90

310 REM NOW THE EXPLOSION
320 CLS 0
330 REM RED BLOB IN MIDDLE
340 X=-32
350 Y=l5
360 SET (X , Y , 4)
3 7 0 REM NOW SPIRAL
380 FOR RO=l TO 25 STEP 4
390 REM GO RIGHT, YOUNG PERSON
400 FOR I-"l TO RO
410 X=X+l
420 SET (X , Y , 4)
4 3 0 NEXT I
440 REM UP, UP AND AWAY
450 FOR I=l TO RO+l
460 Y=Y-1
470 SET (X , Y , 4)
480 NEXT I
490 REM NOW TO THE LEFT
500 FOR I=l TO RO+2
510 X=X-1
520 SET (X;Y,4)
530 NEXT I
540 REM AND FINALLY DOWN
550 FOR I=l TO RO+)
560 Y=Y+l
570 SET (X , Y , 4)
5 8 0 NEXT I
590 NEXT RO
600 GO TO 600

The explosion is the red spiral from Chapter 12. Well, if all the great composers
re-used material, why shouldn't we?

Know your DRAGON 117

Seventeen

MAKE A LIST

I Lists and subscripts

The variable names we have used so far represent a single value. We already know
what is meant by

1 20 XB=0

Here, the value 0 is assigned to the variable XB for further use in our program, and it
holds this value until we change it.

BASIC also allows you to assign a list of values to a variable name. When you do
this, you have what is called an 'array' Try this:

10 REM F I RST MAKE A LIST
20 FOR I=0 TO 10
30 RN (I) =RND (1 00)
4 0 NEXT I

50 REM AND THEN PRINT IT
60 FOR I=0 TO 10
7 0 PRINT RN (I) ;
80 NEXT I

How interesting. On the screen you will see 11 random numbers between I and 100,
but if you look at the program you will see that the PRINT statement was not in the
same loop as the RND function. The key is in the statement

30 RN (I) =RND (1 00)

The variable RN(() in this program represents a list of values and the first
FOR. . NEXT loop assigns random numbers to item number l of the list with I
running from O to 10. BASIC recognizes that RN(I) is a list because we have used
the subscript (I) with it. Therefore

RN(3) refers to the third random number in the above program
X(9) refers to the ninth entry in the list called X

118 Make a list

AB(I + J) refers to the (I +J)th value in the list called AB

A subscript can be any expression, but it is obvious that it has to be interpreted as a
positive integer. In BASIC the lowest subscript is 0. If the value of a subscript is not
an integer, it is chopped off to make one. This means that

PQ(4.66) refers to the fourth entry in the list called PQ

The DRAGON will check every subscript as it is used, and if it is less than zero or too
large, the program will not be allowed to continue. You can use the same variable
name to represent both an ordinary value and a list in a program on the DRAGON
but this could cause you trouble if you try to run a program on another machine. It's
better not to. We'll come to the question of how large a list can be a bit later.

2 Using a list

Suppose Narrowdale Prison has 4 cells - a bit small, but this one is for long stay
VIPs such as heads of state who inflict savage monetarist policies on the people. Each
prisoner is given a number by which we know them. A list could be used to represent
the prisoner numbers. This list could be described as

The prisoner in cell I is number 728
The prisoner in cell 2 is number 2 1 3
The prisoner i n cell 3 i s number 900
The prisoner in cell 4 is number 463

Let's call the list of prisoner numbers PN. There are four cells, and so we need to
define PN(l), PN(2), PN(3), and PN(4). Remember the DATA statement from
Chapter 10? Here is a little program which reads the prisoner numbers from a
DATA list, and prints them out again. In a FOR . . NEXT loop the READ
statement at line 50 gets the prisoner number for cell number L

10 REM JAILHOUSE ROCK
20 DATA 728, 2 1 3 , 900 ,463
30 REM FIRST DEFINE ' EM
40 FOR I=l TO 4
50 READ PN(I)

60 NEXT I
70 REM NOW PRINT ' EM
80 FOR J=l TO 4
90 PRINT PN (J)
100 NEXT J

If you wanted to type the numbers in instead, you could have put

50 INPUT PN (I)

Now let's look for the highest prisoner number. Searching a list is a very common
thing in computing - and there are some special ways of doing it. There is nothing
special, however, about the way I'm doing it here. It is called a linear search. To do
the search, we need to set aside a variable for the answer - HI in this case. We could
give it as an initial value a lower prisoner value than we ever expect to find. It would

Know your DRAGON 119

be clearer, however, to use PN(l) as the first value of HI. We then search along the
list for a higher number, and put into HI if we find one. Graft this onto the end of the
previous program:

110 REM FIND HIGHEST NUMBER
1 20 HI=PN (l)
1 30 FOR J=2 TO 4
140 IF PN (J) <=HI THEN 160
150 HI=PN (J)
1 6 0 NEXT J
170 PRINT "HIGHEST IS"HI

YOLJPe OOWN �
720 10 6/f3 .'

I I I ;;,==.,-,=-=�=, 'ii ' @ E3
. . will ; [IIl] 1IID

1atf/N{(: Wf/Mf(' , PK/$1NER ,
728 213 ' 900

Easy? You should be able to see how this works. Finding the largest or smallest
value from a list is something you often have to do.

120 Make a list

3 99 years is almost for life

It is common for programs to deal with several lists at once, which are related; for
example we might also wish to know the age and remaining sentence of each prisoner:

Cell I
Prisoner Number 728
Remaining Sentence 37
Age 28

2
2 1 3
99
41

3
900
61
16

4
463
12
24

Call the age AG, and the sentence SN. In this little fragment of program, one data
statement is used for each prisoner:

10 REM PRISON RECORDS
20 REM DATA IS IN CELL ORDER
30 REM NUMBER, SENTENCE , AGE
40 DATA 728 , 3 7 , 2 8
50 DATA 213 , 99 , 4 1
6 0 DATA 900, 6 1 , 16
70 DATA 463 , 1 2 , 24
80 REM READ THE DATA

EXERCISE:

90 FOR I=l TO 4
101::' READ PN (I) , SN (I) , AG (I)
111:l NEXT I
! :LIO REM PRINT DATA AS A TABLE
130 PRINT" NO. SENT. AGE"
140 FOR J:l TO 4
150 PRINT PN (J) ; S N (J) ; AG { J)
1 6 0 NEXT J

Now you do some work. Search this data here to find the prisoner who
will be the youngest when released. Show on the screen the cell number,
prisoner number, present age, remaining sentence, and age when released.

4 Are the dice loaded? - a historygram

An array can be used to keep track of how many times various events occur - it is
often all just counting. For example, when you throw a die you expect a result from I
to 6. If we do a lot of throws, we can use an array DI to count the number of J 's that
occur in DI(1), the number of 2's in D1(2), and so on. As well as printing the result at
the end, let's draw the result as a bar graph - you could call this a 'histogram'

First of all the throwing. We generate a random number from J.6 called TH, and all
we have to do to count the occurences is add I to Dl(TH) each time. Quite easy if
you think about it:

10 REM COMPULSIVE GAMBLERS
20 CLS
30 REM FIRST THROW THE DICE
40 PRINT ''THROWING NOW"
50 FOR I=l TO 36

60 TH=RND (6)
70 D I (TH) =DI (TH)+l
80 NEXT I
90 FOR I=l TO 6
100 PRINT DI (I) ;
1 1 0 NEXT I

Now please do try th!s program, because there is an interesting point to be made

Know your DRAGON 121

about random numbers. If you throw the die 36 times, you might expect about 6
occurences of each number. But not exactly. If it was exactly 6, your random
numbers wouldn't be random, would they?

Now the histogram. In the lower part of the text screen I draw little columns
containing the number of blobs to show how many occurrences.

120 REM MAKE THE HISTORYGRAM
130 FOR I=l TO 6
140 FOR RP=l TO 2
150 CO=3* (I-l) +RP
160 FOR RO=l6-DI (I) TO 15
170 SC:::::CO+32*RO

180 PRINT@SC, CHR$ (207) ;
190 NEXT RO
200 NEXT RP
210 NEXT I
220 GO TO 220

Very nice. We'll return to the dice again in a moment.

5 So how long is a list? - DIM

We have ignored so far the space taken up by a list. BASIC assumes that any list you
mention contains 1 1 values, with subscripts from O to 1 0, and this is quite often
suitable as you are unlikely to miss the wasted space if your list is shorter. However,
you can make a list longer or shorter than 11 by using the DIM statement. No, it's
not an insult, it stands for DIMension. You simply put

line number DIM name(size), name(size), .

to tell BASIC the size of any number of lists. You can have any number of DIM
statements as long as you define the size of a given list before you first use it -
otherwise you're stuck with 1 1 and BASIC will object anyway. It is usual to put the
DIM statements for a program at the beginning. If you mention a particular name
more than once in your DIM statements, the computer won't like it.

EXAMPLES:

DIM PN (4) , AG { 4) , SN (4)

reserves exactly four spaces for the lists that make up the Narrowdale
prison database. You could put this in the previous example to save a bit
of memory space.

69 DIM XR{ 200)

reserves 200 spaces for a biggish list called XR.

And now back to the dice. If we throw two dice at once, the sum of the spots can be
any number from 2 (snakes eyes) to 12. To make the subscripts easy, we can use an
array

122 Make a list

DIM DI(12)

to make a histogram. This is a lot like the other histogram program. But please do
run it because the sh�pe of the histogram should surprise you.

10 REM SUM OF TWO DICE
20 DIM DI (l2)
3 0 CLS
40 REM FIRST THROW THE DICE
50 PRINT "THROWING NOW"
60 FOR I=l TO 3 6
70 Ol=RN0 (6)
80 D2=RND (6)
90 TH=Dl+D2
100 DI (TH) =DI (TH) + l
110 NEXT I
120 FOR I:::2 TO 12
130 PRINT DI (I) ;

140 NEXT I
150 REM MAKE THE HISTORYGRAM
160 FOR I:2 TO 12
170 FOR RP=-3 TO -2
180 C0=3* (1 -l) +RP
190 FOR RO=lS-DI (I) TO 15
200 SC=C0+32*RO
210 PRINT@SC, CHR$ (207) ;
220 NEXT RO
230 NEXT RP
240 NEXT I
250 PRINT@448
260 GO TO 260

If you want an explanation, the chances of snakes eyes is I in 36, as is the chance of
any particular combination. You can, however, get a 3 sum in two different ways:
I+ 2 or 2 + I . The chance of this is therefore I in 18. And so on. The most likely
sum is 7 which can be formed in 6 different ways and has a chance of I in 6 - it
comes up about once in six throws. The shape of your histogram shows - roughly -
these different probabilities. But as RND is random, you don't get exactly the
expected number of each possible sum.

6 So how big is memory? - the MEM function

None of the programs in this book are particularly large, but in your later career as a
BASIC expert you will one day write a program that runs out of space in the memory
of the DRAGON 32 Computer. This will probably happen when you try to use a big
array.

If I RUN this one-line program on my DRAGON, everything is OK:

10 DIM Z (49 59)

But if I try

10 DIM Z (4960)

I am out of luck. I get a message

?OM ERROR IN 10

This is because I have run out of memory - OM means 'out of memory'. I can get
more memory on the DRAGON by using the PCLEAR statement. You may recall

Know your DRAGON 123

from Chapter 15 that I can control how many pages of memory are used for the
graphics screen. Normally 4 pages are set aside for graphics. If I didn't want a
graphics screen at all, I could put

10 PCLEAR l
20 DIM Z (5879)

and just get away with it. We can't put PCLEAR 0. At the other end of the scale

10 PCLEAR 8
20 DIM Z (3 72 7)

is the most I can get if I need the maximum of 8 pages for graphics. As soon as r add
additional statements to this program, the available space is decreased by the space
taken up by the program. You can see this in the memory map in chapter I 5.

At any time you can ask the DRAGON to tell you how much memory is available
with the MEM function. As direct commands, put

PCLEAR I
PRINT MEM

And you get the answer 29479 on my DRAGON, which means that 29479 Bytes of
memory are free. Each value in a BASIC program - variable or member of array -
uses 5 Bytes - so you can see that this approximates to the 5879 values I could put in
the array in the earlier example. Similarly

PCLEAR 8
PRINT MEM

tells me I have 18727 Bytes. If I write a little program:

10 PCLEAR 8
20 DIM Z (3 700)
30 PRINT MEM

it will tell me that 184 Bytes are left - not very many. Similarly

10 PCLEAR 1
20 DIM Z (2500)
30 PRINT MEM

tells me there are 436 Bytes free.

The MEM function will always tell us how many Bytes of memory are free. BASIC
allocates spaces to arrays when it sees your DIM statement. Therefore if you try

124

10 PCLEAR l
20 PRINT MEM
30 DIM Z (2500)
40 PRINT MEM

Make a list

You will see that before the DIM statement BASIC thinks that there are 29439 Bytes
free at line 20 but only 427 at line 40, after it has seen the DIM statement.

You can use MEM in the DIM statement. Here is a program that is asking for
almost as much memory as it can get, using the knowledge that one value uses 5 Bytes
of memory.

10 PCLEAR l
20 PRINT MEM
30 DIM Z l MEM/ 5-100)
40 PRINT MEM

Wow! We still have 498 Bytes free for a bit of program which in a practical case we
would want to add to this. This is all getting a bit advanced for a beginners' book, so I
think we'll leave it there.

7 Westminster Chimes

Another musical program. The notes that make up the Westminster Chimes are
defined in DATA statements and we read them into an array called WC. We then
pick them out and play them one at a time. In Chapter 19 we're going to make the
DRAGON into a chiming clock, called Huge Ben.

10 REM DING DONG 100 NEXT I
20 DATA 1 70 , 1 59 , 147 , 108 1 10 REM NOW DO DINGING
30 DATA 108 , 1 59 , 1 70 , 147 1 20 FOR PH=0 TO 3
40 DATA 1 70 , 1 4 7 , 1 59 , 108 1 30 FOR N=l TO 4
so DATA 108, 1 59 , 1 70 , 147 140 SOUND WC (N+4*PH) , 12
60 DIM WC(1 6) 1 50 NEXT N
70 REH READ DONGS 160 FOR ST=l TO 100
80 FOR I=l TO 16 170 NEX'r ST
90 READ WC (I) 180 NEXT PH

Know your DRAGON 125

Eighteen

SORT IT OUT

I Do the DRAGON shufne

With all this music around, I supp0se you think that I am referring to some kind of
dance. Sorry. Once you have got data into lists you are probably going to want to
move it around. You have to be careful how you do this.

Back in the jailhouse, suppose you decide you want to rearrange your prisoners, so
that each moves down one cell number except for the prisoner in cell I , whu moves to
cell 4. In a computer program, you can only move one value at a time. In the prison,
this would be a bit like having only one guard to move the prisoners. Here is what you
would have to do:

and finally

The prisoner in cell I goes in temp0rary accommodation
The former prisoner in cell 2 becomes the new prisoner in cell I
The former prisoner in cell 3 becomes the new prisoner in cell 2
The former prisoner in cell 4 becomes the new prisoner in cell 3

The former prisoner from cell I becomes the new prisoner in cell 4

If we have associated arrays, we have to shufOe them at the same time. Some
prisoners would not be too happy if your prison computer caused them to inherit the
previous inmate's sentence. Others, no doubt, would be delighted! This program does
it properly; add it to the bit from the previous chapter which defines the lists and see
what happens:
170 Rll-1 THE DRAGON SHUFFLE 240 PN(l)•PN(l+l) 310 SN(4),.Sl
180 REM MOVE CELL NO 1 OUT 250 AG(I)•AG(I+l) 320 RDI PINALL't SHOW RESULT
190 Pl•PN (l) 2b0 SN{I)•SN(I+l) 330 PRINT "NOW MOVED TO"
200 Al•AG (l) 2 7 0 NEXT I '340 FOR J•l TO -4
210 Sl•SN (l) 280 REM BRING BACK OLD N O 1 3 5 0 PRINT PN(JJ;SN(J) ;AG(J)
220 REM MOVE THE REST DOWN 290 PN(-4)•Pl 360 NEXT J
230 FOR 1,.1 TO 3 300 AG(4)•Al

126

YaLJ OON'f RND ACalMMODAllON
Maf(I: "TEMPORAR't' 71J.l'N 7H/5 .'

Sort it out

Notice how the prisoners have been moved down one place. This has been done
between lines 190 and 230 in ascending order of cells. On the other hand, if you
wanted to move them up, you should go backwards. Why?

To shuffle up
save the top one
move others in descending order

To shuffle down
save the bottom one
move others in ascending order

2 The great sorting problem

Arranging things in order is one of the great computer problems keeping computer
geniuses occupied. It is very easy to do this, but it is hard to do it efficiently. I am
going to show you two simple (but inefficient) methods.

Putting things in order is called sorting. The things to be sorted are called 'keys'. In
Chapter 22 we'll put words in alphabetical order. Here we do it with numbers.

Bubble sorting is the simple one. We have a list LI of, say, 8 values, which are not in
order, and we want LI(I) to be the smallest, LI(8) the largest. To do this we simply

Know your DRAGON 127

compare LI(I) with LI(2), and switch them if we need to. Now look at LI(2) and
Ll(3) and do the same, and continue along until we have dealt with LI(7) and LI(S).
After we have done this, the numbers will be more ordered than they were, and we
know that LI(S) has the largest value for sure - because it will have been carried
along like the largest bubble rising more quickly. (Is this physically true? Falling
objects go at the same speed in a vacuum. Do large bubbles rise faster?) Anyway, we
now make another pass, until we know that LI(7) has the second largest number. And
so on. Here it is; you can sort any number of keys from 2 to I O using this program.
For a larger number, put in a DIM statement.

10 REM BUBBLE POWER
20 INPUTNHOW MANY KEYS" : N
30 PRrnrENTER"N"KEYS ONE B Y ONE"
40 FOR J"'l TO N
50 INPUT L I (J)
60 NEXT J
70 CLS
80 PRINT "HERE GOES"
90 FOR J•l TO N
100 PRINT LI{J J ;
110 NEXT J
120 PRINT
130 FOR I•N-1 TO 1 STEP -1
140' FOR K•l TO 500: NEXT K

150 FOR J•l TO I
160 IF L I (J) <=LI{J+l} THEN 270
170 REM SWITCH THESE TWO
180 LT•LI { J)
1 9 0 LI(J)•LI(J+l)
200 LI (J+l) =LT
210 CLS
220 PRINT
231?1 FOR K•l TO N
240 PRINT LI {K) ;
250 NEXT K
260 FOR K•l TO 500:NEXT K
270 NEXT J
280 NEXT I

Do you see how the values are switched? Again a temporary store has been used. If
you run it, you will see it all happen on the screen.

This next one is more efficient (slightly). We take each value LI(2), . . . LI(N) in
turn and insert it in the right place. This works because when we get to a particular
place in the list, all the ones before it are in order because of the sorting we did before.
To do this we need our searching expertise from Chapter 17 and our shufne knowhow
from this chapter:

10 REM INSERTION SORT
21?1 INPUT"HOW MANY KEYS" ;N
30 PRINTNENTER"NMKEYS ONE BY ONE"
40 FOR J•l TO N
50 INPUT LI { J)
60 NEXT J
70 CLS
80 PRINT "HERE GOES"
90 FOR J•l TO N
100 PRINT LI { J) ;
1 1 0 NEXT J
120 PRINT
130 REM INSERTION SORT
140 FOR I•2 TO N
150 REM PUT LI (I) IN RIGHT PLACE

160 FOR J•l TO I-1
170 IF LI (I) >•L I { J) THEN 250
180 REH HERE COMES THE SHUFFLE
190 LT•L I (I)
200 FOR K•I T O J+l STEP - 1
2 1 0 LI\K)•LI(K-1)
220 NEXT K
230 Ll \J)•LT
240 GO TO 260
250 NEXT J
260 NEXT I
270 PRINT"AND HERE IT IS"
280 FOR K•l TO N
290 PRINT L I (K) ;
3 0 0 NEXT K

You may find this program a bit difficult; it certainly tests one's ability to think about
subscripts. But that is why it is here. Work at it! And while you're at it, don't forget
to try it. Put in lots of PRINT statements to help you follow it through. If you tried
the bubble sort, then see if you can get a similar display of the sorting as it happens.

128

Nineteen

ANYONE FOR
EINSTEIN?

I You wouldn't want me to leave something out!

Anyone for Einstein

Perhaps this chapter caters for a minority interest, so skip it if you want to. But no
mathematician can be without the mathematical functions of BASIC, and I wouldn't
be earning my pitiful royalties if I didn't tell you how to use them. As I promised
earlier, I'm going to show you how to plot graphs of them. Let's jump straight in.

First the graphs. In Chapter 1 1 I did this:

and this:

10 FOR I=l TO 14
20 FOR J=l TO I
30 PRINT " * " ;
40 NEXT J
50 PRINT
60 NEXT I

10 FOR I=0 TO 1 3
2 0 PRINT TAB(I) ; " * "
3 0 NEXT I

These are both graphs. Look at them sideways. The first one is a solid or bar graph
and the second is an ordinary graph, both of a straight line. Here is a bar graph
showing some random numbers:

Know your DRAGON

10 REM MAKE A GRAPH - RANDOM NOS
20 FOR I=l TO 14
30 X=RND (30)
40 FOR J=l TO X
50 PRINT " * " ;
60 NEXT J
70 PRINT
80 NEXT I

129

You should remember how these work. The semicolon causes printing to continue on
the same line and so we can print X consecutive stars. X is an output from the
random number generator in the range 1-30. Now let's look at some functions.

2 EXP and LOG

These two mathematical functions make a pair and are based on e, or 2. 71828182845,
the magic number which is the base of natural logarithms. The EXP function
provides e raised to a power, and LOG finds the logarithm to the base e. If you're
good at that sort of thing, you will realise that

if Y - EXP(X) then X - LOG(Y)

These programs make graphs of these functions:

10 REM PLOT EXP (X)
20 FOR X=0 T O 3 , 2 5 STEP 0 , 25
30 PRINT TAB (EXP (X)) ; " * "
4 0 NEXT X

10 REM PLOT LOG (Y)
20 FOR Y"'l TO EXP (3) STEP EXP (3) /14
30 PRINT TAB(10*LOG (Y)) ; " * "
40 NEXT Y

The log function can easily be used to base 10 or any other base. You may know that

logeX

logea

so that you could find the log of X to base 10 by a statement like

110 L=LOG (X) /LOG (l 0)

o r t o base A by

110 L=LOG (X) /LOG (A)

130 Anyone for Einstein

3 SIN, COS, and TAN

These are the trigonometric functions of an angle, and are often used. In BASIC the
angle is in radians and this may n� always be convenient, although conversion is easy
since 1r radians is the same as 180 You can get 1r by a magic statement

30 PI=4* AT� (l)

which i s explained i n the next section. Here i s a program which will plot either SIN
or COS for you:

10 REM PLOT A 'rRIG THING
20 CLS
30 PI=4*ATN (l)
40 FOR X=-PI T O P I STEP PI/ 7
50 REM. COULD BE EITHtR COS OR SIN
60 PRHlT TAB (l S . S+lS*SIN(X)) : " * "
7 0 NEXT X

TAN is not as pretty. Use

60 PRINT TAB (l 5 . 5+2*TAN (X)) ; " * "

If you ever wagt to use TAN in a real program, remember that it doesn't like to
evaluate tan(90) - which is tan(7r/2) - or any similar angle. Do you know why?

Know your DRAGON

4 ATN

131

The ATN or 'arc tangent' function is one that a lot or people have trouble
understanding. You tell this [unction the value or a ,,tangent, and the result is the
angle that goes with it. For example, the tangent or 45 is I. Therefore the statement

50 P4=ATN (1)

gives f4 the value or 45
°
; unfortunately in radians. However, 180

°
is 1r radians, and

so 45 is 1r /4 radians.

You can use this fact to get 1r. 1r ATN(I) is 1r/4 radians, then you can find 1r using

30 PI=4*ATN (l)

you can convert any angle given in degrees, called D, to one in radians, called R, by

660 R=D*PI/180

Similarly you could calculate D in degrees from R in radians by

700 D=R*l80/PI

Sometimes all of this can be very useful.

The ATN function can only give results between --rr/2 and 7r/2. This is because the
TAN function, if you look at it, repeats over and over again and the computer does
not know which repetition you want when you use ATN. So it always gives the result
nearest zero.

132

Twenty

INVENT SOME
FUNCTIONS

1 How lo do it

Invent some functions

We have been introduced to most of the built-in functions of BASIC already, although
in Chapter 22 we will see that there are some more to come which deal with
characters. Although the DRAGON provides functions to cover most important
things we might wish to do, it is often useful to make up our own functions for special
requirements. In BASIC you can define a function as long as you can pack it all into
one line. You do this with the DEF FN statement:

line number DEF FNxx(variable) = expression

The name of your function is FNxx, where xx is a combination of letters and numbers
very similar to the combinations allowed for variable names: one letter, two letters, or
a letter plus a number. When you use it, you give it a value to work on, just like you
do with most of the other functions. Normally you would use this in working out the
result, although you don't need to. When the function is used, the expression on the
right hand side is worked out, substituting the value you gave for the variable in the
DEF FN statement. This variable is called the 'argument' of the function. I'm sorry
if this sounds a bit complicated. Some examples will help to sort you out.

2 The apple and Mr. Newton

In Chapter 14, and again in Chapter 15, we used a ball falling under gravity and
bouncing to produce animation. I pretended that the graphics screen was 313 metres
high, and used a formula in which the position of the ball was

Row Number = 3 12 - 1

where t was the number of seconds since it was dropped. I ran the formula backwards
after the ball hit the bottom of the screen at 8 seconds.

Know your DRAGON 133

I could use a function to calculate the row number from the time. For defining the
function I call the time A:

20 DEF FNRO (A) =3*A*A-l

and another one for the column numbers as the ball moves steadily across the screen

30 DEF FNCO (A) =l 6*A-9

Here is the program:

10 R&1 AN APPLE A DAY
20 DEF r'NRO (A) =J*A*A-1
30 OEF FHCO (A) =l6*A-9
40 PMODE 4 , 1
50 SCRE:LN 1 , 1
60 PCLS
70 FOR T=l TO 8
80 RO=FNRO (T)
9 0 CO=FNCO('r)

100 CIRCU (CO , RO) , 12 , l
1 1 0 HEXT T
1 2 0 FOR T=9 TO 1 6
130 RO=FNRO (l7-T)
140 CO=FNCO (T)
150 CIRCLE (CO, RO) , 12, l
160 NEXT T
170 GO TO 170

You will notice that the DEF FN statements have been placed at the beginning of the
program. Actually they could go anywhere before they are used. At line 80, the use
of the function should be obvious; the value of T is used for A in the evaluation of
3"'A*A- I. At line 130, it is a bit more subtle. To make it bounce back, 17-T is the
argument of FNRO, so that 17-T gets substituted for A when the function is used.

134 lnvenl some functions

3 Circles and Choppers

We can find the area of a circle of radius R. The area is R . This is the function:

20 DEF FNCR (R) =4*ATN (l) *R*R

which uses the ATN function to get 1r. This smart idea was explained in Chapter 19.
Here is a little program to print the area of a number of circles:

10 REM CIRCLE AREAS
20 DEF FNCR(R) =4*ATN (l) *R*R
30 REM NOW DO IT
40 FOR X=l TO 2 STEP 0 . 1
50 PRIN'r "RADIUS" x
60 PRINT "AREA " FNCR(X)
70 NEXT X

You can see how the actual value X is substituted for R when the program uses the
function FNCR.

In Chapter 7, I talked about rounding and truncation or 'chopping' of numbers to get
interger results. Recall that the INT function of BASIC takes the next lowest integer.
Here is a function to chop or truncate to an integer value:

60 DEF FNT (X) =SGN (X) *INT(ABS (X))

For comparison :

FNT(l.5) would be 1.0
FNT(-2.J) would be - 2

!NT(1 .5) would b e 1.0
INT(-2.J) would be -3

Ir you want to round instead to the nearest whole number, use this:

70 DEF FNRN (X) =INT(X+0 . 5)

4 Still gambling?

As yet another example, we can write a function to give us the sum of the spots when
two dice are thrown. Here it is:

15 DEF FNTH (X) =RND (6) +RND (6)

Notice that the function argument X is not used on the right handside. I t doesn't have
to be. Here we find it used in our histogram program from Chapter 17.

Know your DRAGON 135

1 0 REM SUM OF TWO DICE 140 NEXT I
15 DEF FNTH (X) =RND(6) +RND(6) 150 REM MAKE THE HISTORYGRAM
20 DIM DI (12) 160 FOR 1=2 TO 12
30 CLS 170 FOR RP=-3 TO -2
40 REM FIRST THROW THE DICE 180 CO=3* (I-1) +RP
50 PRINT "THROWING NOW" 190 FOR RO=l 5-D I (I) TO 15
60 FOR I=l TO 36 200 SC=C0+32*RO
90 TH=FNTH (X) 210 PRINT@SC, CHR$ (207) ;
100 DI (T H) =D I (TH) +l 220 NEXT RO
110 NEXT I 230 NEXT RP
120 FOR 1=2 TO 12 240 NEXT I
130 PRI T DI (I) ; 250 PRINT@448

260 GO TO 260

5 Something about bits

Normally we work and think in what are called decimal numbers. I'm sure you know
that the number 343 is

3 hundreds
4 tens
3 ones hundreds tens ones

We probably use the decimal system or numbers because we have ten fingers.
Computers work in a different system, called binary. A computer can actually only
store values which are on and off, like little switches. On and off have values I and 0
(or TRUE and FALSE). To make bigger numbers, computers have to count up
numbers out or l 's and 0's. Here is a binary number:

100101

It means: I thirty two
0 sixteens

thirty
twos

0 eights
I four
0 twos
I one

six teens eights fours
0

twos ones

Each digit is called a 'bit' and the ·ones' bit is called the 'least significant bit'.

Any number which is odd has the ones bit turned on. Any number which is even has

l:lti Invent some functions

it off. We can use this information to make the computer give us the least significant
bit on the screen. But we can do more! We can make it print the whole binary
number.

If we divide a number by two and take the integer part, we shirt its binary bits one
position to the right. To demonstrate this, notice that the example above is the same
as 37 decimal. Therefore

37 decimal is 100101 binary

INT(37/2) is 18 which is 10010 binary
INT(18/2) is 9 which is 1001 binary

and so on. So we can do the following:

(i) Get the least significant bit and print it
(ii) Shift the bits right
(iii) Go to (i) until the number becomes zero

Here is a function to get the least significant bit of a number I:

20 DEF FNLS (I) =I-INT (I / 2) '2

You can see that this is just the old remainder again. lf you take the remainder after
dividing an integer by two, you have the least significant bit. We can shift the bits
right by having

I - INT(I/2)

Here is the program. I have a very practical use for this in Chapter 24 - right at the
end of the book.

10 REM CONVERT TO B INARY
20 DEF FNLS (I) =I-INT (I/2) '2
30 PRIN'r
40 PRINT " * * *THIS PROGRAM CHANGES LIVES* * * "
50 PRINT
60 PRINT "YOU TYPE IN A NUMBER AND"
70 PRINT" I CONVERT IT TO BINARY"
80 PRINT"THE ONLY PROBLEM IS • • "
90 PRINT"YOU HAVE TO READ IT BACKWARDS "
100 INPUT"GIVE M E A DECIMAL NUMBER" ; D
1 1 0 PRINT " IN BINARY THA'r I S "
120 REM GET THE LEAST SIGNIFICANT BIT
130 PRINT FNLS (D) :
140 RE:!•1 Al�D THEN SHIFT D RIGHT
150 D=IN'i' (D/2)

Know your DRAGON

EXERCISE:

160 IF 0>0 THEN 130
170 PRINT
180 GO TO 100

Ir you put the binary digits one by one into an array, then you can
PRINT them in the correct order. Do this.

6 Involving other variables

137

The functions used as examples so far used only the value of their argument. You
may want to use other variable names. If this is so, there is no way of having
substitutions made for the extra variables � this is a slight limitation of BASIC. You
can only have one dummy argument. Apart from the one name you use as a function
argument, any other variables you mention in the function definition refer to their
actual values.

For example, consider another kind of rounding as first discussed in Chapter 7. The
function FNRS rounds its argument after using a scale factor S, so that the result of
the function is rounded to the nearest S:

20 DEF FNRS (X) =INT (X/5+0 . S) *S

Here, the value that X is given when the function is used is substituted in the right
hand side when it is evaluated, but the value used for S is the actual value of the
variable S. Here is a prog�am to try this out:

10 REM A ROUNDING THING
20 DEF FNRS (X) =INT(X/5+0 . S) *S
30 S=0 . l
40 PRINT"ENTER A NUMBER FOR"
50 PRINT" ROUNDING TO NEAREST 0 . l "
7 0 INPUT N
80 PRINT"ROUNDED ="FNRS (N)
90 GO TO 4 0

138 Subroutines

Twenty One

SUBROUTINES

1 Pass the buck

A subroutine is a separate little program within a program. This can be very helpful.
If you have an easily isolated little task inside a program that you wish to use over and
over again to do the same thing but perhaps under slightly different conditions, you
can make it a subroutine. This makes it easier to use in different programs (if you
have a cassette tape or disk store), and if you have a printer you can trade subroutines
in plain brown wrappers with other DRAGON owners who are similarly inclined.

All you do is write the bit of program out separately, with its own line numbers. It is
usual to start a subroutine at a large line number, like 1000 or 2000. You end your
subroutine with the RETURN statement

line number RETURN

When you want to use your subroutine, you write

line number GOSUB subroutine's line number

The program jumps to your subroutine, does what the subroutine says, and when it
hits the RETURN statement it jumps back to the line after GOSUB.

2 Ring dem bells

Now we are going to make a subroutine to ring the bells. First of all, here is a
subroutine simply to go 'DONG' with the note BL:

3000 REM DONG THE NOTE BL
3010 SOUND BL, 12
3020 FOR ST"'l TO 100
3030 NEXT ST
3040 RETURN

Know your DRAGON 139

Alright, that subroutine doesn't do much. But it would be useful to be able to chime
out any tune we want. Here is a subroutine which calls this subroutine - why not?
We put any tune in the array WC of length NC notes. The main program will worry
about that, and this subroutine will play it.

2000 REM PRIVATE CARILLON
2010 REM PLAYS NC NOTES FROM
2020 REM THE ARRAY we
2030 FOR LB:l TO NC

2040 BL:WC {LB)
2050 GOSUB 3000
2060 NEXT LB
2070 RETURN

Here's a program to play the good old Westminster chimes. We define the number of
notes in a DATA statement and the tune follows in four more DATA statements.

10 REM BIG BEN STRIKES
20 DATA 16
30 DATA 170, 159, 147 , 108
40 DATA 108 , 159 , 1 70, 147
50 DATA 1 7 0 , 1 4 7 , 1 5 9 , 108
60 DATA 108 , 1 5 9 , 170, 147
70 REM READ THE NUMBER OF DONGS
80 READ NC

90 DIM WC (NC)
100 REM READ THE ACTUAL DONGS
110 FOR I•l TO NC
120 READ WC(I)
130 NEXT I
140 REM NOW DO DINGING
150 GOSUB 2000
160 END

You will notice at line 160 there is an END statement. We have been leaving END
statements out at the END of programs lJP until now. Here we need one to end the
'main program'. If it wasn't there, when you run the program it would go crashing on
into the subroutine instead of finishing. What would happen? Try it and see.

You can terminate a program with the statement

140 Subroutines

line number END

You always need one or these where subroutines are involved. Well, nearly always.
In Chapter 23, we will use these ideas to make a fantastic chiming clock!

3 The royal fireworks

We used a spiral for an explosion a while back when the bee flew into the neutron
bomb. So lets make it into a subroutine. At the same time, we will make it more
general. The subroutine will centre the spiral at screen co-ordinates XE and YE. The
size of the spiral will be SZ, and the colour will be CL

We have to be careful to keep the spiral on the screen. If we are adjusting X, the
column number of a blob, then we always have to check that it has not left the screen.
You can see this in a statement like

2080 IF X=63 THEN 2310

which prevents us from pushing the spiral off the screen to the right. There are
similar statements for each of the 4 arms of the spiral. Here is the subroutine.

2000 REM SET BLOB IN MIDDLE
2010 X,,.XE
2020 Y=YE
2030 SET (X , Y , CL)
2040 REM NOW SPIRAL
2050 FOR RO=l TO SZ STEP 2
2060 REM GO RIGHT, YOUNG PERSON
2070 FOR I=l TO RO
2080 IF X=63 THEN 2310
2090 XsX+l
2100 SET {X , Y, CL)
2 1 1 0 NEXT I
2120 REM UP, UP AND AWAY
2130 FOR I=l TO RO
2140 IF Y=0 THEN 2310
2150 Y•Y-1

2160 SET (X , Y , CL)
2170 NEXT I
2180 REM NOW TO THE LEFT
2190 FOR !al TO RO+l
2200 IF X=0 THEN 2310
2210 X=X-1
2220 SET (X , Y, CL)
2230 NEXT I
2240 REM AND FINALLY DOWN
2250 FOR I•l TO RO+l
2260 IF Y=31 THEN 2310
2270 Y=Y+l
2280 SET (X , Y , CL)
2 2 9 0 NEXT I
2300 NEXT RO
2310 RETURN

In the main program, we call up a fireworks display by playing our spirals at random
on a black screen, in random colours and in random groups of upto 10 blasts with a
short break between. Very artistic, although it may not look very much like fireworks.

10 REM FOURTH OF JULY
20 REM OR IS IT 5 NOV?
30 REM UP TO 10 BLASTS
40 CLS 0
50 NB•RND(10)
60 FOR B=l TO NB
70 REM RANDOM COLOR AND POSITIOti
80 CL•RND (B)

90 XE=RtiD (6 4) - 1
1 0 0 YE=RND(3 2) - l
110 SZ=2'"RND (4) +1
120 GOSUB 2000
130 NEXT B
140 REM SLIGHT PAUSE
150 FOR l•l TO 500:tiEXT I
160 GO TO 40

Know your DRAGON

Twenty Two

QUITE IN
CHARACTER

1 String along with me

141

As we enter the final stages of our roundup of BASIC on the DRAGON Computer
we find out here how letters and numbers and other symbols can be handled just as if
they were variables. We have already met character string constants, without
knowing it. Any series of symbols that you put into quotation marks is a character
string constant:

10 PRINT"THIS IS A STRING CONSTANT "

20 PRINT "SO IS T H I S "

Character string variables are given ordinary variable names with the symbol $ added
on:

A$
N9$
CH$

are all names of string variables

A string variable can be subscripted, as for example

10 DIM TT$ (6 0)

defines a string list or array with 6 0 entries, and

20 DIM X$ (2 0 , 2 0)

defines a table o f string variables. Tables o r arrays with two o r more subscripts are
introduced in Chapter 24.

The maximum number of characters in any kind of string is 255.

142 Quite in character

2 What can you do with a string?

Many of the statements of BASIC can manipulate character strings. We have seen
string constants in PRINT statements. Here are the other things you can do.

(a) Assignment
The assignment statement may contain a string variable on the left hand
side and a string variable or constant on the right hand side. You cannot
assign a character value to an ordinary integer variable, nor can you
assign a numeric value to a string variable. Sorry about that. There are,
however, some special functions to use with strings which are described a
bit later. This is what you can do:

line number string variable = string variable or string constant

Of course this includes string variables that have subscripts.

(b) Concatenation - putting strings together
Con what? Another new word! When you push two strings together, it is
called concatenation. You do it with a + sign, but it isn't quite like
addition. Try this:

PRINT "WATER"+"GATE"

Ahal You could also have

10 X$="CASA"
20 Y$=" BLANKA"
30 Z $=X$+Y$
40 PRINT Z$

This can be useful! As long as the result is less than 255 characters long,
you can concatenate freely.

(c) PRINT or PRINT @
In a PRINT statement you can use string constants or variables, or the
special string functions which we will see a bit later.

(d) INPUT

10 TH$="CENSORED"
20 PRINT "THE THOUGHT FOR"
30 PRINT " TODAY IS " TH$

An INPUT statement can ask for character strings. To respond, you
simply type the message you want. You can put it in quotation marks if
you want. You need to put it in quotes only if the message itseir contains
a comma or a colon. A bit later you will rind out about the INKEY$
function for reading one symbol from the keyboard.

Know your DRAGON

(e) IF . . . THEN
Two character strings can be compared, as in

as in

line number IF string compared string THEN line number
to

100 IF BS$ { I) =" STOP" THEN 66

This compares the Ith entry in the string array called BX$ with 'STOP'
and jumps to line 66 if they are the same.

When you compare strings, you have to know what order the symbols
take. The alphabet is always taken in order so that

'ABC' is greater than 'ABB'
or 'AB'

'ABC' is equal to 'ABC'
'ABC' is less than 'ABO'

or 'ABCA'
or 'ABC ' (note the blank)

You can prove this to yourself using this little program:

10 INPUT A$
20 IF " ABC " > A $ THEN PRINT"GREATER"
30 IF " ABC"=A$ THEN PRINT"EQUAL"
40 IF " AB C " <A$ THEN PRINT "LESS"
50 GO TO 10

Because of this, you can sort lists into alphabetical order. If you want to
know the order of the other symbols, look in the Appendix.

(f) DIM
As already mentioned, you can use string variables with subscripts, and
therefore you can give them a size in the DIM statement. If you don't do
this, then the subscripts are assumed to vary from O to 10.

(g) DATA and READ
You can put character string constants in your data list:

10 DATA ONE, TWO , THREE
20 FOR I=l TO 3
30 READ ST$
40 NEXT I
50 PRINT ST$

143

144 Quite in character

This prints THREE. Be careful not to try to read a string constant into a
numeric variable or vice versa. You won't like the results! If a string in a
DATA statement contains either a comma or a colon, or has leading
blanks, you have to put that string in quotation marks.

(h) MID$
MID$ is a statement for replacing part of a string. If you put

line number MID$ (oldstring, position, length) = newbit

then the first 'length' characters of 'newbit' replace part of 'oldstring'
starting at character number 'position'. Complicated? Try this:

10 X$="OLDBIT"
2 0 M I D$ (X$, 4 , 3) - "NEWABC "
3 0 PRINT X $

You should get

OLDNEW

You can see that the value of 'length' was 3, which is less than the length
of 'NEWABC', and so only the first three characters are used. 'oldstring'
and 'newbit' have to be character strings - 'oldstring' would normally be
a character string variable or a string constant. 'Position' and 'length' are
ordinary values. If 'length' is greater than the length of 'newbit', then all
of 'newbit' is used.

EXAMPLE:

gives

10 X$=" BIGLONGTIIINGIE"
20 MID$ (X$, 4 , 20) -"TINY"
3 0 PRINT X$

BIGTINYTHINGIE

The result is always the same length as 'oldstring', so it may use less of
'newbit' than length asks for:

EXAMPLE:

10 X$="SILLY"
20 MID$ (X$, 2 , 6) ="MARMITE"
3 0 PRINT X$

Know your DRAGON

gives

SMARM

You can leave out 'length'. If you do, all of 'newbit' is used, unless it is
too long as above.

EXAMPLE:

gives

10 X$=" STORM COMING"
20 MID$ (X$, 7) ="PENDING"
30 PRINT X$

STORM PENDIN

Please note that there is also a character string function called MID$ that
does not do the same as this MID$ statement.

(i) LINE INPUT
This is a variation of the INPUT statement that is occasionally useful
because you can control the kind of prompt that you get. If you use

line number LINE INPUT prompt; string variable

your 'prompt' is printed without the usual ? and you can then enter one
line of characters including commas and quotation marks if you want.
This is the only way you can ever enter quotation marks. Your 'prompt'
is a constant in quotation marks. Your line of input defines the 'string
variable' - there can be only one.

EXAMPLE:

40 LINE INPUT " TELL ME! " ; sc:;;

(j) PRINT USING
This is a variation of the PRINT statement which gives you total control
over the way information is arranged on the line of output. It involves
two lines - the PRINT USING statement and a separate line which
gives an image of the layout you want. You put

line number PRINT USING image; things to print

The 'image' is a picture of your output line which will be given by some
string expression - usually a constant or a variable.

145

146 Quite in character

The '#' specifies a digit. The '.' specifies the position or the decimal point.
H1;re are the things that can go in an image:

blank
%blanks%

messages

EXAMPLES:

specifies a digit
locates the decimal point
separates values
specifies a character string longer than one character
specifies only one character to be used

you can put messages in the image as long as
they don't contain fl . % ! + - or $.

50 PRINT USING" I I II 11 . l " ; l , 2 , 3

prints I 2 3.0

50 PRINT USING " ! %

prints D MONRO

% " ; " DON " , "MONRO "

You can put little codes with the # specifiers to control how numbers are
printed:

, at the end of the image puts commas after every three digits:

50 PRINT USING " l l # # ll l # l , " ;1E6

prints a million with commas:
1,000,000

start the field with a $ sign

50 PRINT USING " $ 1 # 1 1 " ; l

prints $

$$ puts the $ sign before the first significant digit:

50 PRINT USING " $$### " ; l

prints $ 1

.. $ fills the space before the $ sign with stars - you might do
this in printing a cheque

50 PRINT USING " * * $ 1 1 , l l " ; l

Know your DRAGON

prints ***$ 1.00

for ordinary numbers, fills up to the left with stars

50 PRINT USING"**# , ## " ; 3

prints ** 3.00

+ tells the computer to print a sign in front of every number

50 PRINT USING "+## +## " ; 2 , -2

prints +2-2

This can be combined with **

50 PRINT USING"+** # . # " ; 3

prints **+3.0

and you can force the machine to use exponential or scientific
notation by placing exactly 4 up-arrows at the end of a field:

50 PRINT USING " + U . H i l i l " : 1E6

prints + IO.00E+05

(k) PRINT @ . . . USING
Another variation on PRINT. This is just like PRINT @ which was
introduced in Chapter 12. You can use the @ to get you anywhere you
want on the screen, and the USING to get exactly the image you want

line number PRINT @ screen address, USING image; things to print

there is an example of this in the clock program of the next chapter.

(I) PLAY
A super sound generator which is covered in the next chapter.

(m) DRAW
A super duper graphics generator which is covered in the next chapter.

147

148 Quite in character

3 Sorting into alphabetical order

Here is a program to take a list of character strings and sort them into alphabetical
order using an insertion sort. Each list item IN$(1) has another list item associated
with it, PN(I) which is a number. I used a similar idea to make the Index for this
book. In a character array I put the items I wanted indexed, and in an ordinary array
the page numbers. Then I sorted the character array into alphabetical order, dragging
the page number alongside. Some people think that it is very difficult to index a book.
This one took me two hours. Only a computer can do this:

10 REM MAKE AN INDEX
20 REM- 00 IS THE MAXIMUM SIZE
30 00350
40 DIM IN� (DM) , PN (DM)
50 PRINT"OK HEMMINGWAY, LET ' S GO"
60 PRINT"ENTER ITEM, PAGE NUMBER"
70 PRINT'"AFTER EACH PROMPT. KEEP"
80 PRINT"IT UP UNTIL FINISHED"
90 PRINT"THEN ENTER QUIT , 0 . YOU"
100 PRINT"CAN ' T HAVE AN ITEM NAMED"
110 PRINT" ' QUIT' ON PAGE 0 . "
1 2 0 REM INPUT U P T O 100 ITEMS
130 IN:0
140 FOR I:l TO DM
150 INPUT XNS , I P
1 6 0 IF XNS="QUIT" AND IP:=0 THEN 220'
170 INS { I) =XNS
180 PN(I)zIP

Here's the subroutine:

2000 REM INSERTION SORT STRINGS
2010 FOR IS:2 TO IN
2020 REM FIND PLACE FOR INS (N)
2030 FOR JS=l TO IS-1
2040 IF INS(JS) > INS (IS) THEN 2080
2050 NEXT JS
2060 REM IT GOES AT JS
2070 REM SHOVE OTHERS ALONG
2080 CSS=INS (IS)
2090 PS=PN(IS)

4 Those useful character functions

190 IN=-IN+l
200 NEXT I
210 PRINT"NO MORE ROOM LEFT"
220 PRINT"SORTING NOW"
230 GOSUB 2000
240 PRINT"HERE' S YOUR INDEX"
250 PRINT" l 5 LINES AT A TIME"
260 PRINT"PRESS ENTER TO GO ON"
270 J:l
280 INPUT NLS
290 CLS
300 FOR I:l TO 15
310 IF J>IN THEN END
320 PRINT INS { J) ; PN (J)
3 3 0 J::J+l
340 NEXT I
350 GO TO 280

2100 FOR KS=IS TO JS+l STEP -1
2110 INS (KS) :INS(KS-1)
2120 PN{KS)=PN(KS-1)
2130 NEXT KS
2140 REM AND NOW POP IT IN
2150 INS(JS) =CSS
2160 PN { JS) :PS
2170 NEXT IS
2180 RETURN

Here is a brief list of the functions that the DRAGON provides for you to use with
character strings:

ASC(X$) gives you the ASCII code of the first character in X$. This is a
number.

EXAMPLE: ASC("A") is 65

CHR$(X) changes a value X which is in the ASCII code into a string
character.

Know your DRAGON 149

EXAMPLE: CHR$(65) is "A"

The ASCII code is the number used inside most computers to represent a character.
There is a list of ASCII codes in the Appendix.

LEFT$(X$,X)

MID$(X$,S,X)

RIGHT$(X$,X)

LEN(X$)

picks off the leftmost X characters of X$

picks off X characters from the middle of X$,
starting at charater number S. This does not do
the samething as the MID$ statement.

Surprise! This picks off the rightmost X
characters in X$

gives the number of characters in X$.

EXAMPLE: LEN("FIVE") is 4.

INSTR(X,X$,Y$) - searches X$ to see if it contains the shorter string
Y$ inside it, starting the search from character
number X. The value given is the character
number at which the match is found, or O if it
isn't.

For input there is a very special and useful function, INKEY$, which will be used in
the example of the next section.

INKEY$ glances at the keyboard and gives the character
presently being pressed on the keyboard. If no
key is being pressed the value is "", i.e. nothing.
When you press a key you only get its character
once from INKEY$; holding it down doesn't
cause it to repeat.

There are two functions which can convert a character string into a value and vice
versa. Note that the character " l " is not the numeric value 1, ie

"l" is not equal to I.

However

VAL("!") is equal to I and STR$(1) is equal to "I"

YAL(X$) converts X$ into a number. X$ should be a
string which makes up a number, eg '12.34'. If
the DRAGON runs into a symbol that doesn't
belong, it quits. This would give you a O result if
the first character was wrong.

150

STR$(X)

Quite in character

converts a numeric value X into a character
string that you could print.

There are two more functions for strings:

STRING$(1ength, code or string)

HEX$(X)

S Play it again, Sam

gives a string of the same character repeated
length times, whose ASCII code is given, or else
it uses the first character of a given string

STRINGS(4,) is " "
STRING$(7,"W0W") is "WWWWWWW"

gives a string of characters telling you the value
of X in the hexadecimal number system.

Just for the record, that isn't quite what Bogart said. Using the INKEY$ function,
you can get just one character from the keyboard. Particularly when you are devising
video games, you need to know what key your player is hitting (sorry, I mean gently
pressing) at the moment. A statement like

80 X$=INKEY$

This puts the key that is being pressed into the string variable. If there's nothing
there, you get a null (not a blank). A null is like You can get any symbol, so your
player doesn't hit ENTER every time he wants to dodge the Martian invaders. To
show you how this works, we will use the keys 1 to 8 to play a tune on our bells.

In a data list, I put the note values of a G major scale, and then read them into an
array. I then start looking at the keyboard. When I press the '!', what I get is the
symbol for I, not its value. To get its value, I borrow the VAL$ function from the
next section, and pick out the note you are asking for. I use the DONG subroutine
from Chapter 21:

10 REM DON ' T FORGET THE CANDELABRA
20 DATA 147 , 1 59 , 1 7 0 , 176
30 DATA 185 , 1 9 3 , 200, 204

40 FOR l=l TO 8
50 READ NO(I)
6 0 NEXT I

70 KY$=INKEY$
80 IF KY$="" THEN 70
90 BL:=NO(VAL(KY$))
100 GOSUB 3000
110 GO TO 7 0

D o you see why line number 9 0 i s necessary? I r you have not pressed a key, this
makes the program wait until you do.

Know your DRAGON 151

Twenty Three

HIGHLY STRUNG

I Introducing BIG DRAGON - or is it DRAG BEN?

I promised you a chiming clock. Actually we have most of the bits and pieces already.
In Chapter 21 I gave subroutines to play a tune on the bells. All we need now is to
have a clock.

I have said very little so far about the clock ticking away inside the DRAGON 32
Computer. This is because we can't use it really well without knowing about
character strings and we had more important things to learn about first.

NOW HE "TEI.LG M€ !

152 Highly strung

There is a function called TIMER that reads the clock. You will see it ticking if you
do this:

10 PRINT TIMER
2 0 GO TO 10

There it is, it ticking away merrily. What you are seeing is a number in the memory
of the DRAGON which has one added to it 50 times a second if your electricity
supply is 50 Hz as in Europe and many other places, or 60 times where it is 60Hz
such as in the USA. You can set the timer by putting

line number TIMER = value

and it will start counting from 'value'. It counts all the way to 65535 and then starts
again from 0. This takes about 15 minutes.

Using TIM ER, we can do better than that. Assuming that the electricity supply is 50
Hz, them I am going to make the timer count to 3000, and then reset it, every minute.
But while I am doing this I am going to count the minutes and hours so that the clock
keeps time forever. We can always get the seconds by dividing the timer by 50.
Here's a clock program. If your electricity supply is 60 Hz, change the value of Hz to
60. You will see here a nice use of the PRINT@ . . . , USING statement.

10 REM A 24 HOUR CLOCK
20 F$=" U : U : U . t "
3 0 HZ•50
40 PRINT"GIVE HOURS . MINUTES"
50 PRINT"PRESS ENTER TO START"
60 INPUT H , M
70 TlMER=0
80 CLS 0
90 SzrTIMER/HZ
100 IF TIMER<HZ*60 THEN 170

110 TIMER =0
120 S=0
130 M=M+l
140 IF M<60 THEN 170
150 M=0
160 H=H+l
170 PRINT @0, USING F$; H ,M , S ;
180 IF H>23 THEN H=0
190 GO TO 90

Hey, that's really good, isn't it! You can use it like a stopwatch by entering 0,0 and
pressing ENTER at the starting time. To stop it, press BREAK. Sorry, no split times
although you could program them using IN KEY$.

Now for the really cool bit. I insert in this program

1 75 GOSUB 1000

At l000, I am going to put a subroutine which checks the time and chimes the
Westminster Chimes, using the DONG subroutine from Chapter 2 1.

To do this I have to detect the quarter hours. These happen when S is zero and M is a
multiple of I 5. I use the good old remainder trick again - if the remainder of M

Know your DRAGON 153

divided by 15 is zero, it is time to chime. How much to chime? If the integer part or
M/ 15 is I, then four dongs, two is eight, three is twelve, and zero is the foll treatment.
Here it is:

10013 REM THIS IS BIG BEN
1010 Rill IS S ZERO?
1020 IF S<>0 THEN RETURN
1030 REM M MULTIPLE OF 15?
1040 IF M-INT(M/ 1 5) *1 5 < > 1;:1 THEN RETURN
1050 REM HOORAY, WE' RE GOING TO CHIME
1060 DATA 170, 159, 147, 108
1070 DATA 108, 159, 170, 147
1080 DATA 170, 147, 159, 108
1090 DATA 108, 159, 1 70, 147
1100 RESTORE
1110 REM HOW MANY PHRASES?
1120 NP,.INT(M/ 1 5 }
1130 IF NP"'0 THEN NP•4
1140 REM DO THE CHIMING
1150 FOR I=l TO NP
1160 FOR J""l TO 4
1170 READ BL

2 Threerific noises - PLAY

1180 GOSUB 3000
1190 NEXT J
1200 REM A BIGGER GAP
1210 FOR ST=l TO 200
1220 NEXT ST
1230 NEXT I
1240 REM AND THE HOUR?
1250 IF M< >0 THEN RETURN
1260 REM AN EVEN BIGGER GAP
1270 FOR ST•l TO 500
1280 NEXT ST
1290 BL232
1300 FOR DG=l TO H
1310 GOSUB 3000
1320 REM ANOTHER GAP
1330 FOR ST:l TO 200
1340 NEXT ST
1350 NEXT OG
1360 RETURN

The PLAY statement is a more versatile music maker than the SOUND statement. It
uses character strings to define all the qualities or a particular note, and one big
advantage of it is that you use the normal note names to make a tune. You write

line number PLAY lune

'lune' is a character string - a constant or a variable or an expression. Try these

PLAY "A"

PLAY "G" + "C"

They all work. Your 'tune' can include many bits of information separated by
semicolons:

Notes 'A' to 'G' with sharps and nats, or semi-tones · I ' to • 12'

0 - switches Octave. You can have 01 to 05.
Leave it out and 02 is used. Once you set it, it stays set.

L - change note length. You can have L I to L255.
Leave it out and the last length you used stays set.

T - for Tempo. You can have Tl to T255.
Leave it out and T2 is used. Once you set it, it stays set.

V - for volume. You can have VI to V31.

154 Highly strung

Leave it out and V 15 is used. Once you set it, it stays set.
P - for Pause. You can have PI to P255.

Leave it out and there is no pause.
X - for eXecute. Followed by the name of a string, which is PLA Yed.

As you can see, there are quite a few facilities. We will illustrate them all.

(a) Notes A to G or ' l ' to ' l 2'.
You can say F+ or F/1 for F sharp (or any other sharp) and B- for 8
nat (or any other flat). The numbers correspond to the twelve semitones:

Note Number

C or B# I
C# or D- 2
D 3
E- or D# 4
E or F- 5
F or E# 6
F-JI. or G- 7
G 8
G# or A- 9
A 10
B- or A# I I
B or C- 12

This litlle program plays a chromatic scale:

10 FOR I=l TO 12
20 PLAY STR> (I)
3 0 NEXT I

Notice the use of the STR$ function to convert a value of I to the
corresponding character.

Right! Here's a little tune in F major by Thomas Tallis. I'm using it
because all the notes have the same length and lie in the same octave,
although I have cheated once.

121 REM A LITTLE CANON
20 PLAY" F ; F ; E ; F ; F ; G ; G ; A "
30 PLAY"F ; B- ; B- ; A ; A ; G ; G ; F "
40 PLAY" A ; B- ; G ; A ; A ; G ; G ; F "
5 0 PLAY"C ; D ; E ; F ; A ; G ; G ; F "
6 0 GO T O 20

This is a 'canon' or 'round' which means that the phrases will all
harmonize with each other. Do you have a friend with a DRAGON?

Know your DRAGON

Get them to start one phrase after you. How beautiful. Up to four people
can do this! Here it is again using numbers:

10 REM ANOTHER WAY
20 PLAY" 6 ; 6 ; 5 ; 6 ; 6 ; 8 ; 8 ; 10 "
30 PLAY"6 ; 1 1 ; 1 1 ; 10 ; 1 0 ; 8 ; 8 ; 6 "
4 0 PLAY" l 0 ; 1 1 ; 8 ; 1 0 ; 1 0 ; 8 ; 8 ; 6 "
50 PLAY" l ; 3 ; 5 ; 6 ; 10 ; 8 ; 8 ; 6 "

(b) Tempo, Octave, and Pause
It is quite easy to vary the tempo and extend the range of notes to several
octaves. We select the tempo with the letter T;

10 PLAY " T l "

selects tempo I , which will stay set until w e change it. I f a program
doesn't set the tempo, it starts off at T2. The allowed tempos are between
TI (slow) and T255 (very, very fast).

We can also select the octave we are using with the letter 0. The normal
octave set when you RUN a program is 02. 01 is lower, and 03, 04 and
05 are higher.

In this little program we play a fragment of a famous piano piece by
Beethoven. We will complete it in a moment, but first of all see how the
octaves and notes are defined in DATA statements, and read into the
string variable X$

10 REM TAKE THIS, ELSIE
2 0 REM DEFINE THE TUNE
30 DATA"O3 ; E ;D# ; E ;D#:E"
40 DATA " O 2 ; B ; O 3 ; O ;C ;O2 ;A"
50 DATA"Ol ; E ; A ;O2 ; C ; E ;A;B"
60 DATA"Ol ; E ; G# ; O2 ;E ;G# ; B ; O3 ;C"
70 DATA"Ol ; E ; A ;O 2 ; E "
8 0 REM DEFINE THE TEMPO

90 PLAY"T8"
100 REM AND PLAY IT
110 RESTORE
120 FOR I=l TO 5
130 READ X$
140 PLAY X$
150 NEXT I
160 GO TO 110

Now wait a minute, it doesn't go on forever, does it? The actual piece
contains a lot of phrases repeated, and so we would be clever to try and
make use of that, as follows:

Suppose X 1 $ � :tJ-
�

X2$
• i-

i= .. _..,,

155

156 Highly strung

h =
XJ$ �, -.

=--

X4$ -

Then the piece goes (more or less) Xl$;X2$;X3$;Xl$;X2$;X4$ and then all over
again. There is then a middle section which I break into 5 new bits called Y I $ to
Y5$. Then various X and Y combinations conclude the piece. Here it is:

10 REM,LUDWIG ' S MASTERPI&CE

20 REM MAKE ALL THE PHRASES

30 Xl$•"03 ; £ ; DI; E ; Dt ;£ ;02 ;B:03 ;D;C;02;A"
40 X2$•"01 ;E;A;02 ;C;E;A; B;Ol ;E;Gf"
50 XJ$•"02 ;E;Gf ;8;03 ;C;Ol :E;A;02 :!:'.:"
60 X4$•"02 : E;OJ;C ;02 ; B;A;Ol ;E;A"
70 YlS•"OJ ;C; D:E:01 ;G;02 ,C;G;Ol;F;E;D"
80 Y2$•"Ol;G;B;O2;F;OJ;E;D;C"
90 Y3$•"O1 ;E;A;O2;E;O3; D;C:O2:B"
lil0 Y4$•"01 ;E:02; E;E;OJ; E ;02 ; E ;OJ ;E"
110 YSS•"E :04;E:03;0f ; £ : Ol ; E ; Dt ; E : Dt"
12'1l REM NOW PL,W IT
130 PLAY"T8"

140 PLAY Xl$+X2$+X3$
150 PJ,.A.Y Xl$+X2$+X4S+"P8"
160 PLA'i XlS+X2S+XH
170 PU.¥ Xl$+X2S+X4S+"O2:B"
180 PLA'i 'iU+Y2S+'i3$
190 PU.Y Y4S+YSS
200 PLAY Xl$+X2$+XlS
210 PLAY Xl$+X2$+X4S+"O2:B"
220 PLAY 'il$+Y2S+Yl$
230 PU.Y Y4$+'i5$
240 PLAY XlS+X2S+XlS
250 PU.Y Xl$+X2S+"O2 :D;Ol;C;O2;B;T2;A"

Can you count the notes? It's pretty good going for a 25 line program! You will see a
few adjustments to get it just right. I tacked a pause on the end at line 50, and instead
of that a B at line 160. If you study Beethoven's piece you will see why. The pause

'PI'

gives a break one note long at tempo TI . So P8 is the same length as a note at T8.

At the end of the piece, there is a note four times slower. We will shortly see another
way of doing this.

(c) Volume and tempo - and leaving out semicolons
If we study Beethoven's score, we will see that we are asked to get louder
and softer quite often, and also to slow down and speed up a few times.

The volume is set by the character V. If we say nothing about volume, it
sets V I S. You can have anything from V I to V31. Here's a tone that
gets louder:

Know your DRAGON

10 REM CRESCENDO
20 ?LAY"Tl 6 ; Vl ''
30 FOR 1=2 TO 3 1
4 0 PLAY"G; V"+STR$ (1)
50 NEXT I

In the Beethoven piece, we could change the volume and the tempo using
T and V strings. But there is a very clever way of making the computer
get one step louder or softer, and also ways of speeding up and slowing
down. You put

T + to speed up by one step
T- to slow down by one step
T < to double the speed
T> to halve the speed

Try this:

10 REM ACCELERANDO
20 PLAY"Tl "
30 FOR 1=2 TO 100
40 PLAY"C ; F ; T+"
50 NEXT 1

and this

10 REM CRESCENDO
20 PLAY"TB ;Vl"
30 FOR 1=2 TO 3 1
4 0 PLAY"C ; F ; V+"
50 NEX'r 1

V + to get one step louder
V - to get one step quieter
V < to double the volume
V> to halve the volume.

Now if you look at the first bar of the Beethoven piece that we used
above, you can see that the volume is supposed to swell and diminish. So
we will change XI$ accordingly:

30 X.1$•"O3 ; E; D#-;TB;V+: E :V+; Dt ;V+; E;O2 ;V-;8;O3 ;V-;D;V- ;C:O2 ;A"

Now this string is getting a bit long, so you may prefer it with the
semicolons left out - actually with one exception that you haven't seen
yet, the semicolons can be left out:

30 Xl $="03ED#T8V+EV+D#V+E02V-B03·v-ov-co2A"

Similarly there is a slowing down in several places, usually at the same
time as the volume is changing. Here is the whole piece with the volume
and speed adjusted throughout. I have kept some semicolons to make it
more readable.

157

158 10 REM WI.WIG'S MASTERPIECE

20 REM MAKE AIL 'IHE PHRASE'S
30 Xl$="O3 ;E; Di ;TS;V+; E; V+; D#; V+;E:O2 ;V- ; 8;03 ;V-; D;V-;C;O2 ;A"
40 X2$="O1 ;E;A;O2;V+;C;V+;E;V+;A;B;Ol ;E;G#"

50 X3$="O2;V+;E-;V+;G#;V+;B;O3;C;Ol;E;A;O2;E"
60 X4$="O2 ;V- ;V-; E ;03 ;V-; V-;C;O2; V - ; V -r B; A;Ol; E;A"
70 Y1$:"Q3;V+;V+;C;V+;V+;D;V+;V+;E;Ol;G;O2;C;G;O3;F;E;D"

80 Y2$="Ol;G;B;O2;F;O3;E;D;C"

90 Y3$="Ol;E:A:O2;E;O3;D;C;O2;B"
100 Y4$="O1 ;E;O2;E;E;O3;E;O2 ;E;OJ ;E;V-"

Highly strung

110 YS,S="E ; V -;04; E ; V -;03 ;D# ; V -;T-; E ;V-; D# ;V- ; E;V - ; [)j; V-;T-; E;V - ; D# ;V- "
120 REM NO'l PIAY IT

130 PI.AY"T8;V2'.'
140 PLAY Xl$+X2$
145 PLAY X3$+Xl$
150 PIAY X2$+X4$+"P8"

160 PLAY Xl$+X2$

165 PIAY X3$+Xl$
170 PLAY X2$+X4$+"O2;B"

180 PLAY Yl$+Y2$+Y3$
190 PI.AY Y4$+Y5$

200 PIAY Xl$+X2$
205 PLAY X3$+Xl$

210 PI.AY X2$+X4$+"O2; B"
220 PI.AY Y1$+Y2$+Y3$

230 PLAY Y4:;i+Y5$
240 PLAY X1$+X2$

245 PLAY X3$+Xl$
250 PLAY X2$+"O2;V-;T-;D;O3:V-:T-;C;O2;V-;T-;B;Tl ;V-;A"

(d) Lengths, dots, and substrings.
The character L in the PLAY statement sets the lengths of notes.
Previously, we had set the tempo and had all the notes at the same length
- the length you get this way is the same as L4. So the tempo set by T is
like one beat in 4/4 time. If you set a length with L, it stays set until you
change it again.

LI
L2
L4
LS
L16

and so on

EXAMPLE:

one whole note (semibreve) o
one half note (minim) c:J
one quarter note (crochet) .l Ji

��: ;;;�e�\�i�o��c:;:fquaver) Ji

A short fragment of tune with quarter and eighth notes

10 REM COUNTING SHEEP
20 PLAY"T4"
30 PLAY"L4 ; C ; C ; F ; F ; LB ; G ; A ; B - ; G ; L2 ; F "

Know your DRAGON 159

Dotted notes in music have their lengths extended by half; they can also be double
dotted or more:

L4 one quarter note J
L4. 1/4 + 1/8 J.
L4.. 1/4 + 1/8 + 1/16 J ..

EXAMPLE:
Contains a dotted note

10 REM TUM TE TUM
20 PLAY"T4"
30 PLAY"L4 . ; C ; L8 ; F ; L2 ; G "

And finally, there is a third way that the PLAY statement can give its string of music.
This is called a substring. If you use the letter X followed by the name of a string
variable, the computer executes the string variable as music. You always have to
follow the $ in the substring name with a semicolon, even at the end of a PLAY
statement. So we have three ways:

(i) String constant
PLAY "C;D;E;F;G"

(ii) String variable or expression

10 X$="C ; D ; E ; F ; G "
2 0 PLAY X $

or even

20 PLAY X$+X$

(iii) Substrings

10 X$=" C ; D ; E ; F ; G"
20 PLAY "T8 ; XX$; T l 6 ; XX$; "

(note the semicolon at the end)

or even

10 X$= " C ; D ; E ; F ; G "
20 Y$ ="T8 ; XX$; T l 6 ; XX$; "
30 PLAY" O l ; XY$; O 2 ; XY$; O 3 ; XY$; "

160 Highly strung

in which the substring Y$ contains another substring, X$. The
substring can be very useful because you can put long phrases
together. Remember that strings can only be 255 characters long
� when you use method (ii) you will be in trouble if X$+Y$ is
longer than 255 characters, but not in method (iii).

EXAMPLE:
Brahms' lullaby contains changing lengths and dotted notes. I have done
it with substrings.

10 REM GO TO SLEEP
20 REM DEFINE TUNE

90 X7$="O2L8FFO3L2FL8DO2B-O3L2C"

30 Xl$•"O2L8AAO3L4 . CO2L8AL4AO3CP4"
40 X2$•"O2L8AO3CL4FL4. EL8DL4DC"

100 X8$2"O2L8AFL8. B-L32O3CO26-L4AGL2F"
110 REM PATCH TOGETHER AS SUBSTRlNGS
120 Yl$,-"XX1$;XX2$;XX3$;XX4$; "

50 X3$•"O2L8GAL48-GL8GAB-P4" 130 Y2$•"XX5$; XX6;; ;XX7;;; XX8 $; "
6 0 X4$•"L8GB-O3EDL4CEFP4" 140 REM PLAY IT
70 X5$"'"O2L8FFO3L2FL8D02B-O3L2C"
80 X6$..,"O2L8AFL4B-OJCD02AO3C"

150 PLAY"T2;XYl;;;XY2 ;; ; "

3 Phantastic Graphics

Another string-controlled facility is provided by the ORA W statement. As with
PLAY, you write something like

line number ORA W picture

and the computer will make line drawings for you on the graphics screen following the
instructions given by 'picture' which is a string. It is as if you had a graphics pen
which you can push around the screen, changing its colour and turning it on and off.
It has the following controls

M x,y

U distance
0 distance
L distance
R distance

E distance

F distance

G distance

H distance

move 'pen' to screen co-ordinate x,y.
As with all operations on the graphics screen, x
has the range 0-255 and y has the range 0-192.

move pen up distance 'distance'
move pen down distance 'distance'
move pen left distance 'distance'
move pen right distance 'distance'

move pen at angle 45 (up and right) distance
'distance'
move pen at angle 135 (up and left) distance
'distance'
move pen at angle 225 (down and left) distance
'distance'
move pen at angle 3 1 5 (down and right) distance
'distance'

Know your DRAGON

X string name

C number
A angle
S scale

N
B

executes a substring

set colour of pen to colour number 'number'
start drawing at angle 'angle'
scale drawing by scale 'scale'

return to present position after drawing
don't draw - just move pen

161

You put these together, separated by semicolons which are mostly optional, just as
with the PLAY statement.

(a) Simple shapes
We can use the ORA W statement to make simple shapes. This one
makes a rectangle. First we move the 'pen' to 64,48. We use the B prefix
to get it there without drawing a line. Then right, up, left, and down.
Notice PM ODE and all that because we are on the graphics screen.

10 REM DON ' T BE SQUARE
20 PMODE 1, 1
30 SCREEN 1 , 1
40 PCLS
50 DRAW " BM64, 194; Rl28 ; U96 ; Ll 28 ; D96"
60 GO TO 60

W e can also draw a n 'isometric', o r three dimensional view o f a box quite
easily. Can you see the order in which it's done? One of the lines is gone
over twice - unless you use another M string (which is more bother) it is
unavoidable.

10 REM BOXED RIGHT IN
20 PMODE 1 , l
30 SCREEN 1 , 1
40 PCLS
50 DRAW" BM64 , 48E3 2Rl 28G3 2Ll 28D96 "
60 DRAW " Rl28E32U96G32D96"
70 GO TO 70

Notice that I left the semicolons out - just as with PLAY you can do
this - except after the names of substrings as you will see.

(b) Colour, Angle, Scale
You can use the string

C colour number

to change the pen colour to any colour in the colour set being used, as

162 Highly strung

determined by the PMODE and SCREEN statements - see Chapter 13.

You can cause the drawing to be rotated by an angle by using

A angle

The available angles are

AO normal
A I 90° clockwise

A2 180° clockwise
A3 270° clockwise

You can alter the scale of the drawing, having it magnified or reduced by
putting

S scale

where scale can be a whole number from I to 62 and indicates the scale
factor in quarters, i.e.

and so on.

SI is 1/4 scale
S2 is 1 /2 scale
S3 is 3/4 scale
S4 is 4/4, i.e. normal scale
S5 is 5/4, i.e. blown up to 125%
S8 is double scale

Here we use these all together. The box is drawn using colours 0 to 7,
scales I to 8, and at different angles:

Scale
I
2
J
4

Angle
0

Colour
2
J
2
J

Actually, the program isn't much different. See how each of these new
parameters is set by concatenating a STR$ function onto the character
code.

10 REM SWINGING ·BOXES
20 PMODE 1, l
30 SCREEN 1, 1
40 PCLS 1
50 FOR I=l TO 4
60 DRAW " S " +STR$ (I)

7 0 DRAW "A"+STR$ (I - l)
8 0 DRAW "C"+STR$ (I+2-INT (I /2) *2)
90 DRAW"BMl 2 8 , 96E3 2R64G3 2L64064 "
100 DRAW' R64E32U64G32D64"
110 NEXT I
120 GO TO 120

Know your DRAGON

(c) Relatively speaking
So far we have used the M string to move the 'pen' to the starting position
or our drawings; it was preceded by B to blank it out. Without the B, the
M string draws a 'vector' from the present position of the pen to its new
place. Try this: you will see that the 'pen' zigzags in the screen corner

70 REM START DRAWING

163

10 REM ABSOLUTE VECTORS
20 PMOOE 1 , 1
30 SCREEN 1, 1
40 PCLS

80 FOR X=0 TO 1 2 7 STEP 8
90 DRAW "M "+STR$ (X+l) +" , 0 "
100 DRAW "M0, "+STR$ (X)

50 REM MOVE TO CORNER
60 DRAW "BM 0 , 0 "

1 1 0 NEXT X
1 2 0 GO TO 1 2 0

ff you use a sign with the x and y co-ordinates, the pen will d o a 'relative'
movement - instead of drawing a line to the co-ordinate x,y, it will move
by X and Y positions. Almost the same program:

10 REM RELATIVE VECTORS
20 PMODE 1, l
30 SCREEN 1 , 1
40 PCLS
50 REM MOVE TO CORNER
60 DRAW"BM0, 0"

70 R�� START DRAWING
80 FOR X=0 TO 1 2 7 STEP 8
90 DRAW"M+"+STR$ {X+l) + " , 0 "
100 DRA\'l''M+0, " +STR$ l X)
1 1 0 NEXT X
1 2 0 GO TO 1 2 0

D o you understand the difference? The + after the M i n the DRAW
statements does this. You can have positive or negative steps, as long as
there is some sign on the X co-ordinate. Here's a spiral:

10 REM SPIRALY VECTORS
20 PMODE 1 , 1
30 SCREEN 1 , 1
40 PCLS

70 DRAW"M+"+STR$ (X) + " , 0 "
80 DRAW "M+0 , - "+STR$ (X)

50 REM SPIRAL OUT FROM CENTER
60 FOR X=l 'TO 128 STEP 8

90 DRAW "M - " +STR$ (X+4) +" , 0 "
100 DRAW"M+0, "+STR$ (X+ 4)
1 1 0 NEXT X
120 GO TO 1 2 0

You can see that I didn't move the pen before starting the spiral. The pen
is always at (128,96) when you RUN a program.

(d) To update or not to update - that is the N
When you use any of the pen motion strings, the position or the pen is
'updated' after each move - it is put at the end of whatever line you have
just drawn. We used this program to draw a box:

10 REM BOXED RIGHT IN
20 PMODE 1, 1
30 SCREEN 1 , 1
40 PCLS

50 DRAW " BM64, 48E32Rl28G32Ll28O96"
60 DRAW " Rl28E3 2U96G3 2D9 6 "
70 G O T O 7 0

164 Highly strung

Now if we prefix a move command with the letter N - for No update -
the pen goes back to where it started. So if we take the same program but
put N in front of each move, then all the lines are drawn from one place.
The box program now produces a star:

10 REM NO UPDATES TODAY, THANKS
20 PMODE 1 , 1
30 SCREEN 1 , 1
40 PCLS
50 DRAW " NE32NR128NG32NL128ND96"
60 DRAW " NR128NE32NU96NG3 2ND96"
70 GO TO 70

The N prefix takes effect for only one move.

(e) Substrings and big explosions
As with PLAY, the DRAW statement can be told to execute a substring
with the X string. The X is followed by the name of a string variable, and
you always need a semicolon after that. You can have things like

DRAW "BM0,0RJ2D32XA$;"

and substrings can call substrings which call substrings .

This program uses A$ as a substring that draws a star. It sets a random
scale factor and chooses a random colour before drawing the star at a
random location using the substring A$.

HI REM FILL UP WITH STARS
20 AS.,"NU8ND8NL8NR8NE8NF8NG8NH8"
30 PMODE 3 , 1
4 0 SCREEN 1 , 1
S0 PCLS
60 FOR l•l TO 40
70 REM RANDOM SCALING
80 DRAW"S"+STR S (RND(3 2 J)
90 REM RANDOM COLOR 2 J OR 4

100 DRAW"C "+STR$ (RN0(3J+l)
110 REM RANDOM X AND Y
120 X.,RND (2S6)-l
130 Y•RND (l92)-l
140 REM HERE COMES SUBSTRING
1S0 DRAW"BM"+STRS (X)+", "+STRS (Y)+"XAS; "
160 NEXT I
170 GO TO S0

When you run this program, you will see that the DRAGON very kindly
lets you wander off the screen without getting into trouble.

Know your DRAGON 165

Twenty Four

TURN THE TABLES

I A whole new dimension

We know how to use lists . they are arrays with one subscript. I expect we also know
that working with a subscript often requires careful thought. Now we will find out
that arrays with two or more subscripts are possible, although if you use a lot or
subscripts you will run out of memory very quickly. You could think of a list, such as
A, defined by

10 DIM TH (3)

as being laid out in a column:

TH(O)
TH(!)
TH(2)
TH(J)

With two subscripts you have a table, like

10 DIM TB (3 , 3)

which specifies

TB(0,0)
TB(l ,0)
TB(2,0)
TB(J,0)

TB(0, 1)
TB(! , \)
TB(2,1)
TB(l,l)

TB(0,2)
TB(l,2)
TB(2,2)
TB(3,2)

TB(0,3)
TB(l ,3)
TB(2,3)
TB(J,3)

When you use a table, you write two subscripts separated by a comma; the first gives
the row number and the second is the column number

166 Turn the tables

TB(I,J) for Row number I, Column number J

If you use a variable name with two subscripts, the computer knows that you are
talking about a table. But you have to be consistent. Once a variable is a list, you
can't make it into a table and vice versa. As with a list, if you don't have a DIM
statement for an array with two subscripts, BASIC will assume that each varies from
0 to I 0, and it will therefore reserve 121 spaces in memory for it. As this is quite a lot
of space, you should always remember to give a DIM statement if you want less. The
normal array of three subscripts would use 1331 spaces, and so as the number of
subscripts increases it becomes more and more important to have a DIM statement.
The DIM statement can be used to specify several arrays:

line number DIM variable sizes with , variable sizes with , .
commas

The variables can be ordinary, integer, or string variables.

2 Do your budget

A lot of things in real life turn out to be best represented by tables. Here is a family
budget:

The Fairwetherstonehaugh Family Budget

The Stately The Banqueting
Home Rolls

January 3000 540 900
February 3000 560 900
March 2000 580 1200
April 1500 240 300
May 1000 600 400
June 500 650 400

Couturier Opera and

1500
1200
1650
1300
900
200

Ballet

700
100

0
300

50
2300

(Glyndebourne and
Bayreuth!)

The family name, by the way, is pronounced as if it were 'Fanshawe'. No kidding!

You could set this out in a DATA statement, and read it into a table:

Hl REM l'ANSHAWE l'MILY BUDGET
20 REM THE STATELY HOME
30 DATA 3000,3000,2000,1S00 , L 000 , 500
40 REM THE LIMOUSINE
50 DATA 540 , 560,580, 240,600 ,650
60 REM THE CORDON BLEU �=· �\::0

s���I;�0��:0 , 400,400

90 DATA l500 , l200 ,l650 , L J00 ,900 , 200

100 REM THE ENTERTAINING
110 DATA 700,H'l0, 0 ,300,50 , 2300

l20 01M FB(6,5)
130 l'OR J•l TO S
140 FOR I•l TO 6

t�= �� iB(I ,J J

Know your DRAGON

You can also put in captions for the rows and columns:
180 REM THE CAPTIONS
190 DATA JAN,FEB,HAR, APR,HA't,JUN
200 DATA HOUSE,HOTOR,FOOO,M.GS, GlGGLES
218 FOR l•l TO b
220 READ CRS (I)
230 NEXT I
240 FOR J•l TO 5
250 11.EAD CCS (J)
260 ITT:XT J

167

I have used I for column numbers and J for row numbers for no particular reason
except that people usually do. After all of this the budget is in FB, and CR$ has the
row captions and CCS the column captions.

Now let's work on this table. First find out what the half-yearly budget is for each
item:

270 CLS
288 PRlNT"HElll!: IS THE FANS!lAWE BUDGET"
290 PRINT
300 PRINT
318 RD\ 00 HALF YEAR'S BUDGET
320 FOR J•l TO S
330 SM•0

and the monthly totals:
410 CLS
420 PRINT "HERE ARE YOUR MONTHLY TOTALS"
430 PRINT
440 FOR I•l TO 6

340 FOR l•l TO 6
�:: �:;�M;FB(I,J)

��= ::��:;:"YOUR - CCS(J) " BUDGET IS" SH

390 NEXT J
408 INPUT"PUSH ENTER TO GO ON" ;AS

469 FOR J•l TO S
:�: ;�tB(I.Jl

490 PRINT "IN " CRS (l) " YOU WILL SPENO" St1
see PRINT

168 Turn the tables

SL0 NEXT 1
520 WPUT"PUSH E�TER TO GO ON";/1.$

and compute the total cash now for the half year:

530 SM•0
540 FOR !•l TO 6
550 fOR J•l TO 5
560 SM•SH+FB (I , J)
570 NEXT J
580 NEXT I

590 CLS
600 PRINT "YOUll TOThL EXPE�DITURE THIS HAL,r
610 PRINT" IS "SM
620 PRINT
bJ0 PRINT"BETTER SEt.L THE FAMILY SILVER l "

D o you see how the nested loops have been used with the subscripts t o work out each
sum?

You could use this program to do your own budget. Put your own expenses in the
DATA statements. Extend the number of items and months if you want - you will
have to reorganize your output if you do. When you finish your program will look
quite different, but it will be the same, if you see what I mean.

3 Animation through arrays - GET and PUT

Now that we know about arrays of two dimensions, you will be delighted to find that
you can use them to save little bits or the graphics screen, and put them back again.
This is a nice way to organize animation, as you will see.

You can tuck away any little rectangle from the graphics screen into an array by
writing

line number GET (left corner) - (right corner), array, G

In this statement,

'leftcorner' is a pair of x,y co-ordinates giving the graphics screen
co-ordinates or the upper left corner or what you want to
save.

'rightcorner' is a pair of x,y co-ordinates giving the graphics screen
co-ordinates or the lower right corner of what you want to
save.

'array' is the name or the array to save it in
'G' - don't ask questions, just use it.

When you want your rectangle back on the screen, write

line number PUT (leftcorner) - (rightcorner), array, action

In this statement,

'leftcorner', 'rightcorner' and 'array' are as above.
'action' specifies what you want done with the picture.

Know your DRAGON

You can choose
PSET
PRESET

AND

OR

NOT

set the screen rectangle to what is in the array
any point set in the array is reset on the screen
- you can make a picture disappear this way.
clears every point in the screen rectangle unless it
is set in the array.
sets every new point in addition to what is
already there. This adds the pictures together,
with your new picture underneath.
'reverses' the picture in the screen rectangle. It
doesn't actually use the picture in the array.

169

GET and PUT will work together properly if you use the same PM ODE resolution for
each. The size of the rectangle has to be the same as the size of the array. The next
example illustrates this.

EXAMPLE:
That rolling ball again. First we define a circle on the screen. I centre it
at 100, 100 and give it radius 12. Then I copy it into the array CR. The
rectangle I copy has corners at 88,88 and 112,112. The size of it is
therefore 25x25 which is (I I 2·88 + I) - remember that it includes both
corners. Therefore CR has to be dimensioned

DIM CR(25,25)

This first program runs it across using PSET:

u, REM PUSHOVER
20 PCLEAR 4
30 DIM CR{ 2 5 , 2 5)
4 0 PHODE 4, l
50 REM SET UP CIRCLE
60 PCLS
70 CIRCLE (100, 100) , 1 2 , l
80 GET (88,88) - (1 1 2 , 1 1 2) , CR,G
90 REM SET UP SCREEN

100 PCLS
110 LINE (0 , 1 7 5) - (2 5 5 , 1 91) , PSET,BF
120 LINE { 0 , 1 7 5) - (2 55 , 191) , PRESET,B
130 SCREEN 1, 1
140 REM NOW START IT MOVING
150 FOR X=0 TO 239 STEP 1 2
1 6 0 PUT (X,150) -(X+24 , l74l , CR, PSET
170 NEXT X
180 GO TO 180

Not terribly good. Do you see what is happening? To use OR, change
line 160:

10 REM PUSHOVER
20 PCLEAR 4
30 DIM CR(2 5 , 2 5)
40 PMODE 4, 1
50 REM SET UP CIRCLE
60 PCLS
70 CIRCLE { 100, 100) . 12 , 1
8 0 GET (88,88) - (11 2 , 11 2) .CR, G
90 REM SET UP SCREEN

100 PCLS
110 LINE (0 , 1 7 5) - (2 55 , 191) , PSET,BF
120 LINE (0 , 1 7 5) - (2 5 5 , 191) , PRESET,B
130 SCREEN 1 , l
140 REM NOW START IT MOVING
150 FOR X•0 TO 239 STEP 1 2
1 6 0 PUT (X, 150) -(X+24, 174} , CR,OR
170 NEXT X
180 GO TO 180

170 Turn the tables

4 Quite the example - not only marathon runners but also (gasp)
hexadecimal numbers!

Here I'm going to place a running figure on the screen. The use of GET and PUT to
animate this is easy. Most of the complicated bit is in creating the four 'shots' of the
runner that I use. This is how I designed the runner on graph paper:

11· ·· 1· 1·
. .. -·

.
. --. . .

.

. . . . -· ·· ·. ii
Each shot is 18 screen locations wide and 18 high. Look at the top row of the first
frame. All that is needed in this row is three blobs of the runner's head. If this figure
uses only colours 0 and I, I can define this row in a DATA statement:

10 REM THE HARD WAY
20 DATA 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0

To make all four frames this way would require 72 DATA statements with a total of
1296 zeros and ones. This is a bit excessive.

However, notice that the data looks a lot like a binary code. Surely I can give each
row as an ordinary number, and 'crack' it into binary using the sort of decimal to
binary subroutine that I told you about in Chapter 20. So I can give the whole top
row of the first shot as one number which happens to be

448 whose binary code is 111000000

The only thing that is wrong with this is the difficulty of working out the code 448 in
the first place. What we need is a code which is easier to construct from binary than a
decimal number but less cumbersome than binary, which just has too many digits.
The solution is to use the hexadecimal number system.

As it turns out, computers are generally organized around groups of four, eight, and
sixteen binary bits. You may know that an 8 bit group is called a 'byte'. With 4 bits
you can count from zero to 15, so if you use base 16, or 'hexadecimal' for counting
everything works out conveniently. Here is a list of the possible digits in hexadecimal.

Decimal Binary Hexadecimal Decimal Binary Hexadecimal
0 0000 0 4 0100 4

I 0001 1 5 0101 5
2 0010 2 6 0110 6
J 0011 J 7 Ol l i 7

Know your DRAGON 171

Decimal Binary Hexadecimal Decimal Binary Hexadecimal
8 1000 8 1 2 1 100 C
9 1001 9 1 3 1 101 D

10 1010 A 14 1 1 10 E
I I 101 1 B 1 5 1 1 1 1 F

You can see that decimal and hexadecimal are the same from O to 9. Then the
decimal system runs out of digits, while hexadecimal goes on. We use A, B, C, D, E
and F. Once you get over the shock of seeing letters used as digits, it's quite easy.

So how do you make big numbers? Think of your everyday decimal system:

hundreds tens units

In hexadecimal, instead of counting in units, tens, hundreds, etc., you count in units,
sixteens, two hundred and fifty sixes, and so on:

Hexadecimal

Binary

I
256's
0001

C
l 6's
1 100

0
units
0000

Which is 256 + I 2xl6 + 0 - 448!!

You can see that I CO hexadecimal is the top row of the first frame of the runner.

So, hey presto, I can now render the first shot of the runner as 18 hexadecimal
numbers:

Binary
00 0000 000 I I I 00 0000

00 0000 000 l 1100 0000

00 0000 0000 I 000 0000

00 0000 00 I I 0000 0000

00 0000 I IOI 0000 0000

00 0000 01 1 1 1 1 10 0000

00 0000 0011 0000 0000

00 0000 00 l O 0000 0000

00 0000 00 I O 0000 0000

00 0000 0 I I O 0000 0000

00 0000 0101 !000 0000

00 0000 0100 0110 0000

I I 1 1 10 0100 OOIO 0000

10 0001 I 100 0010 0000

00 0000 0000 00 I O 0000

00 0000 0000 00 I O 0000

00 0000 0000 00 I O 0000

00 0000 0000 00 I I 0000

Hexadecimal
,co
,co
80

JOO

DOO
7EO

JOO

200

200

600

580

460

3E420

2lC20

20
20

20

JO

In Extended Color BASIC, if you write &H in front of a number, you are using a
hexadecimal constant. The snag is that you are allowed up to four digits only.

172 Turn the tables

& HO is O decimal
& H 1 CO is our friend 448 decimal
& H 1000 is 4096 decimal
& HFFFF is 65536 decimal, the largest hexadecimal constant allowed.

This is very boring because our runner occasionally needs 5 digits. However the fifth
digit occurs only four times, so I can add these in later, as you can see in the program.
Here it is:

HI REM LONG DISTANCE RUNNER
20 PC!.LU.· 4
3 0 REt1 FIRST FJW.\E
40 DATA i,Hlce.,HlC0,,HB0
50 DATA 5-H300,i,H000, '-H7E0
60 DATA &H300,i,H200,i,H200
70 DATA U\600 , ,H580 , ,H460
80 DATA .i,ll£420,i.HLC20, '-H20
90 DATA i,H2B,,H20,.I.H30
106 REM SECOND f'JW,\E
110 DATA i.H380,5-H380, "-Hl00
120 DATA "ll300,l.HD00, '-Hl900
130 DATA i.H780,i,H260, ,tt200
140 DATA ,tt200,i,Hl80, i.Hl40
150 DATA i,HJFE0,i,H2100, l,H200 ��= r�-'

T��;�
e

;.
;::

0,i,HE00

180 DATA i,H70,"H70,,H20
190 DATIi "HlE0,"H620,"-Hl20
200 DATA "-H7E,"H40,"-H40
210 DATIi "H70, "H88, "H86
220 DJ\TA "Hl06,"H308, "H410 �!: :;;"

F��=�:
·
;�:

0 , t.H2000

250 DATJ\ "H70,"H70,"H20
260 DJ\TA t.HlE0,"-H221, "H23£
270 DATA "-H230,"-H20,"H20
280 DATA t.H30,t.H48, "-H86
290 DATA t.Hl01,t.H£01, t.H7001
301:1 DATA t.HC002,t.H81:11:12, t.H3
310 DIM A (l 7 , 17) , B (l 7 , 1 7) , C (l 7 , l 7) , 0 (l 7 , l 7)
3 2 1:1 REM MAKE THE ACTUAL PICTURES
330 PM.ODE 4,l
340 SCREEN 1 , l
3 5 0 REM FRAl-lE ONE
360 GOSUB 1000
370 PSET (0 , 1 2 , 1)
380 PSET (L l 2 , l)
390 PSET (0 , 1 3 , 1)

:t: �� i:;..:t�b, 1 7) , A, G

420 GOSUB 1000

430 GET (0 , 0) - (1 7 , 1 7) , B , G
4 4 1:1 REM F RAM E THUE
450 GOSUB 1000
461:1 GET (0 , 1:1) - (1 7 , 1 7) , C,G
471:1 REM FRAME FOUR
480 GOSUB 1000
490 PSET (l , 1 5 , l)
500 G£T (0 , 0) - (1 7 , 1 7) , D , G
5 1 0 REM A.'<D START RUNNING
520 PCLS
530 PUT (118,86)-(135,133) , A,AND
540 PUT (118,86)-(135 , 10 3) , A , PSET
550 PUT (118,86) - (1 3 5 , 1 03) , 8,/I.ND
560 PUT (118,86)-(135,Hl J) , 8 , pSET
571:1 PUT (118,86)-(135,103) ,C,AND
580 PUT (118,86)-(135, 103) , C , PSET
591:1 PUT (118,86)-(''135.H!lJ) , D,AND

:�: �g
T T6 1��0

86)-(i35, 102) , 0, PSET

1000 REM SUBROUTUIE TO DEFUIE
HH0 REM ONE FRAME FRCfol DATA
l020 PCLS
1030 REM DECODE 18 NUMBERS
1048 FOR ZR•8 TO 17
1050 READ ZN
l060 ZC•l7
l070 GOSUB 2000
1080 NEXT ZR
1091:1 RETURN
2000 REM SUBROUTINE TO SET ONE
2010 REM RO,. ON THE SCREEN BY
2020 REM OECOOlNO THE NUMBER ZN
203{! R[!,1 RO,. NO ZR 1S SET
2040 REM STARTS J\T COLUMN ZC
2058 REM WORKS BACK TILL ZN ZERO
2060 DEF FNLS(I)•l-INT(l/2)•2
2070 PS£T(ZC,ZR,FNLS (ZN))
2080 ZN•INT\ZN/2)
2090 lF ZN•0 THEN RtTURN
2l00 ZC•ZC-l
2110 GO TO 2070

In the program, the four shots of the runner are coded into hexadecimal in the DATA
statements. The first task of the program is to decode these one at a time and create
the pictures, which you can see taking place in the corner of the screen. Frames one
and four need a few extra bits turned on because the DATA statements contain only
the rightmost 16 columns. As the pictures are created, they are tucked away in the
arrays A, B, C, D using GET.

The runner is then animated in the centre of the screen, using PUT. To erase each
frame, I use AND because that would only leave on bits that are common to two
frames.

Know your DRAGON 173

I BASIC progr1ms

A program has numbered lines, or statements, like

line number statement

When you use the command RUN, the BASIC program in the computer is obeyed in the order of line
numbers unless the program itself decides otherwise. The DRAGON does not require an END statement,
but many computers do. A program stops running when it runs out of lines or an END statement is
encountered. It can be restarted by a CONT command as long as the program has not been changed.

A program can be made to pause by pressing SHIFT and @. It will then continue if any key is pressed.

A program can be stopped by pressing BREAK. You can then enter commands to the computer. You
can restart the program by entering CONT as long as the program has not been changed.

The STOP statement has the same effect as pushing BREAK.

Several statements can be written on one line separated by colons, as

10 FOR I=l TO 500: PRINT ! : NEXT I

174 Appendix

2 Commands

Anything you type without a line number is a command (except when a program is running). The
following would normally be used as commands although there is nothing to stop you including them in a
program.

CLOAD "name" Load a program 'name' from cassette. If no 'name' given, loads next program. See
Chapter 9.

CLOADM "name", offset Load a machine language program.
CONT Resume ell:ecution of a program after STOP or END statements or after BREAK key has

been pressed.
CSA VE "name� Save the current program on cassette with the name 'name' if given. See Chapter 9.
CSA YEM "name", start, end, transfer. Save a machine language program.
DEL Deletes lines from a program

DEL or DEL- Kills it all
DEL 20 - Delete 20 to end
DEL 50 Delete line 50
DEL -200 Delete up to line 200
DEL 10-50 Delete all lines from 10 to 50

DLOAD �name�, rate Loads a BASIC program from strange device at specified baud rate.
'rate' - 0 for 300 baud. 'rate' � I for 1200 baud.

EDIT line number Edit specified program line. The line is copied to the bottom of the screen and you
then edit it to make a new copy.

Push SPACE copies one character
nSPACE copies n characters
n< jumps n spaces to left
nC change n characters
nD delete n characters
nSc search forward for nth occurence of character c
H hack line here and begin inserting
X extend the line by jumping to end and inserting
L list the line again and continue editing
SHIFT and escape from current subcommand (usually used when inserting)
ENTER finished editing this line

See Chapter 2 for a description of the editor with examples.

LIST Print the current program on the screen
UST or LIST - Print entire program
LIST 20 - Print line 20 to end
LIST 50 Print line 50
LIST -200 Print up to line 200
LIST I 0- 50 Print all lines from 10 to 50

LUST Print the current program on the 600 baud serial printer. Options identical to LIST.
NEW Throw current program away and start a new one.
RENUM new, start, difference. Change the line numbers of the current program starting at line

number 'start' whose new number is 'new', and going up by 'difference' each line.
It's clever - changes GOTO, GOSUB, IF . . . THEN statements as required.

Most of the statements of BASIC can be executed like a command; for example if you enter without a line
number

CLS 3
your screen is cleared to blue. Statements used this way are called 'direct' statements. Using colons you
can string several statements into a command:

FOR I=l TO 1 0 : PRINT TAB { I) ; " * " : NEXT I

You cannot use the statements INPUT or DEF FN as direct statements.

Know your DRAGON 175

Everything you type that begins with a number is a line of BASIC, except when a program is running.

(a) Entering
Simply type in the program; each line begins with a line number and ends by pressing RETURN.
You can put several statements on one line with colons between, as in

30 FOR I=l TO 10: PRINT I* I : NEXT I

(b) Correcting
Replace a line by typing it in full, or use the editor summarized under commands above, also
described in Chapter 2.

(c) Inserting
A new line is inserted by using a suitable line number.

(d) Deleting
A line is removed by typing the line number and pushing RETURN. Or use the DEL command
described above.

4 Numbers in BASIC

Numbers which are constants in BASIC can take four forms:

(a) A number with a decimal point, such as 2.71828.
(b) As above with the letter E and an exponent, e.g. 3.61E23 meaning 3.6lx!0 v.
(c) A hexadecimal constant written &H number with 'number' in the range ()..FFFF hexadecimal.

Example &H3E5C.
(d) An octal constant written &O number with 'number' in the range 0 - 1 77777 octal. Example

&H377.

5 Variables in BASIC

(a) Ordinary variables
in BASIC represent numerical values. They can be given names which arc

singlc lcttcrs: A.B,C, . . Z

a letter plus a digit: AO, Al, . . 29

two letters: BL. ZC, .

You cannot use the following as variable names: FN, IF, OR, ON, TO, GO.
(b) String variables

represent values which arc character strings and have ordinary variable names with a S sign: AS,
CHS, P7S, .

{c) Scalars
A variable is 'scalar' if it is written without a subscript. It represents a single value, e.g. X7.

(d) Arrays
A variable represents an array if it is written with subscripts, such as T(1,2,3), AS(7), WC(I).
There is no limit on the number of subscripts. A particular array must always have the same
number.

(c) Subscripts
A subscript may be any expression; however, the value it gives must be between 0 and the
maximum for that subscript. Non-integer subscripts are truncated to integers.

176 Appendix

(f) Array sizes
The maximum size of a subscript for an array is 10 unless a size is set up by a DIM statement.

6 Character strings

(a) A sequence of symbols in quotation marks is a character string constant, e.g. "WHOOPEE".
They can be used in PRINT statements, DATA, IF. . THEN, and on the right hand side of
assignment statements. ln the DATA statement the quotation marks can be omitted unless the
string contains a comma or a colon or has leading or trailing blanks. String constants may be
found in the statements MID$, PRINT USING, PRINT @ . . . USING, PLAY and DRAW.

(b) String variables have names ending with $, such as AS, CHS, P7$. They can be used in the
statements INPUT, GET, PRINT, READ, IF . . . THEN, LET, DIM (and therefore they can be
subscripted).

(c) In comparing strings in the IF . . . THEN statement, the order is that of the ASCII codes
tabulated in Section 13 of this Appendix. Strings at the beginning of the alphabet are less than
those near the end.

'QR' is less than 'QN'
'QR' is less than 'QRA'
'QR' is less than 'QR ' (note the blank)

(d) Character expressions can be written which concatenate character strings using the + sign:
"GOOD" + A$

7 Arithmetic expressions

Operations use the hierarchy:

()

' I
/

+ -

expressions in brackets
exponentiation
multiplication and division
addition and subtraction

Operations of equal priority arc done left to right.

high priority

low priority

Expressions can be written using ordinary variables or constants, e.g. (A+3)/D(I). A single variable or
constant is itself an expression. You cannot do arithmetic with character string variables.

The operators •, t and / normally have to appear between values but the operators + and - can appear
in front of any value.

A*/8 is illegal
A*-8 is legal

8 Relational expressions

(,) arithmetic
expression

character
string

relational
operator

relational
operator

A+-B is legal
A + - + - + - B is legal

arithmetic
expression

character
string

e.g. PQ < 3.

e.g. "NOW" > L$(K).

The result of a relational expression is TRUE or FALSE. Relational expressions are used only in the
IF. . THEN statement.

(b) The relational operators are

Know your DRAGON

>
equal to
greater than
Jcssthan <

> = or - >
<- or -<
<> or ><

greater than or equal to
less than or equal to
not equal to

(c) The operators NOT, AND, OR can be used in relational expressions.
These have hierarchy

AND
(inclusive) OR

NOT

9 Library functions

highest

lowest e.g. (P-Q 2) OR (AS>-"B")

BASIC on the DRAGON Computer provides the following functions.

ABS(X) The absolute value of X, i.e. made positive. (Chapter 7).
INT{X) The integer next below X. INT{S.5)-5. INT(-3.5)--4. (Chapter 7).
FIX(X) X truncated to an integer. FIX(S.5)-5. FIX(-3.5)--3. (Chapter 7).
SIN(X) The sine of X where X is an angle in radians (Chapter 19).
COS(X) The cosineofX where X is an angle in radians (Chapter 19).
TAN(X) Tangent of X where X is an angle in radians (Chapter 19).
ATN(X) Angle in range -.-/2 to r/2 with tangent X (Chapter 19).
EXP(X} The value e" (Chapter 19).
LOG(X) The na1ural logarithm log.X (Chapter 19).
SQR{X) The square root of X where X musl be positive {Chapter 7).
SGN{X) Sign of X: I if positive, 0 if zero,- I if negative (Chapter 7).
PEEK(X) The value contained in memory address X.
RND{X) A random number in the range 1-x. (Chapter 16).
ASC(XS) The ASCII code of the first character in XS (Chapter 22).
CHRS(X) A siring character whose ASCII code is X (Chapter 22).
LEFTS(XS,X) String leftmost X characters ofXS (Chapter 22).
MIDS(XS,S,X} A string of X characters starting from the Sth character in XS (Chapter 22).

177

POS{X) The present column number of the screen cursor. X - 1 gives printer, X-2 gives
screen.

RIGHTS(XS.X) String using the rightmost X characters of XS (Chapter 22).
VAL(XS) Convert XS to a number, e.g. "12.34" becomes 12.34 (Chapter 22).
STRS(X) Convert X to a string, e.g. 12.34 becomes "12.34" (Chapter 22).
INSTR(start, string, target) Searches 'string' for target string 'target' starting at character

number 'start' (Chapter 22).
STRINGS([en, code or string) Gives a string of 'len' identical characters specified by the ASCII

HEXS(X)
TIMER
MEM
POINT
PPOINT
EOF(X)

'code' or by the first character of the 'string' (Chapter 22).
String of 4 Characters giving X in Hexadecimal (Chapter 22).
Set or read internal clock (Chapter 23).
Number of bytes of free memory (Chapter 17).
Status of a point on text screen (Chapter 12).
Status of a point on graphics screen (Chapter 15).

On file X, returns FAL.SE(0) if there is more data, TRUE(!) if there is no more
data.

JOYSTK(X) Co-ordinate of joystick on text screen.
X - 0 horizontal position of left joystick

- 1 vertical position of left joystick
- 2 horizontal position of right joystick
- 3 vertical position of right joystick

178 Appendix

USR(X) Jump to machine language subroutine at memory address X.
V ARPTR(variable) Gives memory address of the variable.

In the above, X is any expression, which could include references to other functions. XS is a character
string. The X or XS are called the argument or parameter of the function.

The TAB function is used in PRINT statements and is described in Section 1 1 of this Appendix.

10 The statements of DRAGON Colour Basic

These are given here in alphabetical order, and include some not described in the main text. Most of the
statements of BASIC can be executed as 'direct statements', like a command, by typing them without a
line number. Those that cannot be treated that way are DEF FN, and INPUT or INPUT;' .

line number AUDIO ON or AUDIO OFF Sound from cassette recorder is switched on or off to
television set. Not described in the text.

line number CIRCLE (column,row), radius, colour, ratio, start, end (Chapter 14) Draw a circle.
line number CLEAR bytes, top Sets aside 'bytes' bytes of string storage space up to 'top' as highest

address. Not described in the text.
line number CLOAD "name" (Chapter 9) Loads program called 'name' from cassette. If no 'name'

loads first program found.
line number CLOADM "name", offset Loads machine language program 'name' from tape. Not

described in text.
line number CLOSE number Closes file number 'number'. Not described in text.
line number CLR Sets all variables to zero but not your program. The command RUN does this

anyway. Not described in the text.
line number CLS colour (Chapter 12) Clears text screen to colour number 'colour'.
line number CMD value Send output to file number value instead of to the screen. To get it back to

the screen, CLOSE the file. Not described in text.
line number COLOR foreground, background (Chapter 14) Sets graphics screen foreground and

background colours.
line number CONT (Chapter S) Continues program execution after STOP or END statements or

after BREAK is pressed.
line number CSA YE "name" (Chapter 9) Save the current program on cassette and call it 'name'.
line number CSA YEM Saves a machine language program on cassette. Not described in text.
line number DATA constant, constant, . . . (Chapter 10) The constants are stored in the computer in

order. Successive DAT A statements add to the DAT A list. Information from the list can be
assigned to variables by the READ statement.
If the constants are character strings, they can be given with or without quotation marks. The
quotation marks are required if the string contains a comma or colon or has leading or trailing
blanks.

line number DEF FNxx(variable)-expression (Chapter 20) Used to define your own functions. See
Section 12 of this Appendix.

line number DEFUSRn. Define entry point for machine language function. Not described in the text.
line number DEL Normally a command. Sec Appendix Section 2.
line number DIM name(sizes), name{sizes), . . . (Chapter 17) The DIM statement specifies the

maximum size of arrays. The sizes must be integer numbers. If an array is not mentioned in a
DIM statement, then each subscript can vary from O to 10. An array can be mentioned in at most
one DIM statement, and must always have the same number of subscripts.

line number DLOAD name,rate Load program ·name' from strange cassette at specified baud 'rate'.
0= 300 baud, I = ! 200 baud.

line number DRAW string (Chapter 23) Sophisticated line drawing statement.
line number EDIT line number (Chapter 2) Normally used as a command. See Appendix Section 2.
line number END {Chapters 2 and 21) When an END statement is reached, the execution of a

program terminates, as it does when it runs out of lines. It can be restarted with the CONT
command.

Know your DRAGON 179

line number EXEC (address) Go to machine language program at 'address', or last CLOADM
address. Not described in text.

line number FOR variable-expression a TO expression b STEP expression c (Chapter 8)
This statement begins a FOR . . . NEXT loop, which is repeated with the variable starting at the
value given by expression a and stepping by expression c until it reaches expression b. The STEP
is optional and if it is not given the step used is 1. The variable can be adjusted during the loop
but the initial, final, and step values are set when the loop first begins and cannot be altered from
inside the loop. A loop ends on a NEXT statement which must be present. FOR. NEXT loops
using different variables may be nested.

line number GET (leftcorner) - (rightcorner), destination, G (Chapter 23)
Saves rectangle of graphics screen in array.

line number GOSUB line number (Chapter 21) Used to call a subroutine. See Section 12 of this
Appendix.

line number a GOTO line number b (Chapter 5) This causes an immediate jump to line number b.
line number a IF relational expression THEN line number b (Chapter 6)

When the IF statement occurs, the relational expression is evaluated and if it is TRUE the
program jumps to line number b. If FALSE, the program carries on with the next line after line
number a. Relational expressions are described in Section 8 of this Appendix.

line number IF relational expression THEN statements ELSE statements (Chapter 6)
An alternative form of IF . . . THEN in which several statements can be executed in either the
TRUE or FALSE cases provided the whole construction is put on one line.

line number INPUT variable, variable, . . (Chapter 4) This causes the computer to request
information from the keyboard. It will prompt with a '?' and wait for the information to be
entered. The user should enter the correct number of values with commas between. If too many
items arc given, your DRAGON will ignore the extra and tell you so. If too few are given it will
keep asking for more. You can write:

line number INPUT "message�; variable, variable, .
to prompt yourself with the message. You have to use a semicolon in this case.

line number INPUT# value, variable, variable, . . . The same as INPUT but takes input from the file
given by value, which must have been OPENed. This is not described in the text.

line number LET variablc=expression (Chapter 4) The expression on the right hand side is worked
out, and its value replaces the value of the variable. The word LFT can be used in DRAGON
Colour BASIC. Without the key word LET this is the normal assignment statement.

variable=expression
line number LIST Normally a command. See Appendix Section 2.
line number LUST Normally a command. See Appendix Section 2.
line number LINE(col l,row 1)-(col 2,row 2),PSET or PRESET,B or BF (Chapter 14)

Draws a line or a box or a solid block of colour.
line number LINE INPUT "message"; string (Chapter 22) Nearly useless statement for input of the

string variable 'string'. The message is optional and the semicolon goes with the message.
line number MID$ (oldstring, position, length)-newstring (Chapter 22) Replaces 'length' characters

in the string 'oldstring' with the 'newstring' starting at 'position'.
line number MOTOR ON or MOTOR OFF. Turns cassette motor on and off. Not described in this

text.
line number NEXT variable (Chapter 8) The NEXT statement indicates the end of a FOR . . NEXT

loop. You can leave out the variable name, and you can give several variable names separated by
commas which are taken from left to right. This does not enable you to violate the proper nesting
of loops.

line number NEW Normally a command - would make your program self-destruct. See Appendix
Section 2.

line number a ON expression GOTO line number b, line number c, . (Chapter 6)
o,

line number a ON expression GOSUB line number b, line number c, . . . (Chapter 19)
This allows a multiple choice of destinations. The expression is evaluated and truncated to an
integer. If the result is 1, the branch is to line number b, if 2, to line number c, and so on. If the
result is negative, zero, or too great for the number of destinations, the program continues with the
next line after line number a. The statement is in two forms; one is a choice of destinations for an

180 Appendix

ordinary jump and the other is a choice of subroutines.
line number OPEN name,# unit, file Opens the file whose 11alue for INPUT# , CLOSE# and PRINT#

is 'unit'. 'File' is 0 for keyboard/screen, I for cassette, 2 for printer. Not described in the text.
line number PAINT(col,row),colour,bound (Chapter 15) Colours in a shape, starting at graphics

screen position (col,row) and painting to a boundary whose colour is 'bound'.
line number PCLEAR pages (Chapter 15) Reserves 'pages' pages of graphics memory. Normally 4

pages are cleared.
line number PCLS colour (Chapter 13) Clears graphics screen to desired 'colour', or background

colour if 'colour' is omitted.
line number PCOPY source TO destination (Chapter 15) Copy graphics from source page to

destination page.
line number PLAY string (Chapter 23) Sophisticated music making statement driven by strings.
line number PMODE mode, first page (Chapter 15) Selects resolution and memory used for graphics

screen. See also Appendix Section 14 for modes.
line number POKE(address,value) Puts a 'value' in the range 0-255 into the memory at 'address'. Not

described in the text.
line number PRESET(col,row) (Chapter 13) Reset a point on graphics screen to background colour.
line number PRINT value punctuation value . . . (Chapters I and 1 1) This produces printed output.

See Section 1 1 of this Appendix.
line number PRINT' unit, value punctuation value . Produces output on the unit whose number is

given, which must have been OPENed. It behaves like the PRINT statement described in Section
1 1 of this Appendix. Not described in this text.

line number PRINT USING image; output (Chapter 22) A form of PRINT statement with control
over the layout.

line number PRINT @ screen address, output (Chapter 12) A variation on PRINT useful for graphics
on the text screen.

line number PSET(column,row,colour) (Chapter I 3) Colours a spot on the graphics screen.
line number PUT(leftcorner)-(rightcorner),source,options (Chapter 23) Puts a rectangle of graphics

back on the screen.
line number READ variable, variable, . . . (Chapter 10) This assigns values to the variables in order

from the list of values established by one or more DAT A statements. Successive READ
statements continue through the list. You have to be careful not to read numbers where character
strings are expected, and vice versa.

line number REM any old comment (Chapter 4) This does nothing in a running BASIC program. It
is provided to allow explanations to be inserted in programs.

line number RENUM new, start, difference Normally used as a command. See Appendix Section 2.
line number RESET(column,row) (Chapter 1 1) Resets a blob on the text screen when using graphics.
line number RESTORE (Chapter 10) Returns later READ statements to the beginning of the DATA

list.
line number RETURN (Chapter 22) Used in subroutines. See Section 12 of this Appendix.
line number RUN Normally used as a command. See Appendix Section 2.
line number SCREEN screen, colours (Chapter 13) Selects graphics screen (I) or text screen (0) and

colour set. Refer to Appendix Section 14 for available modes and colour sets.
line number SET(column,row,colour) (Chapter 12) Sets a blob of colour on the text screen.
line number SKIPF "name" (Chapter 9) Skips to end of program 'name' on cassette, or if no name

skips one program.
line number SOUND tone, duration (Chapter 10) Makes the tone specified by 'tone' of duration

'duration' through television speakers. See Appendix Section 1 7 for musical note values.
line number STOP Your program will halt and tell you where it was broken into. You can carry on

with the CONT command as Jong as you do not change the program.
line number TRON or TROFF (Chapter 8) Turns the program tracer on or off.

Know your DRAGON

I I Printing

All output is done by the PRINT statement and its variations:

line number PRINT value punctuation value .
line number PRINT @ screen address, value puctuation value .

The values can be
(a) expressions giving a numerical result
(b) a string expression which is printed asa message
(c) a character string in quotation marks
(d) the TAB function.

The punctuation can be

181

(a) a comma to jump to the next field on the screen. A row on the screen is divided
into two columns, each 1 1 spaces wide.

(b) a semicolon to squeeze theva!ues together
(c) omitted before or after a character string in quotation marks, in which case the

effect is like a semicolon.
If you end a PRINT list with a comma or semicolon, the next PRINT statement continues on the
same line. Otherwise all PRINT statements start a new line.

The TAB function
T AB(X) causes the output line to jump to column number X. It cannot, however, move
backwards, and will use the next available space if the print position is already beyond column X.
This is used only in a PRINT statement.

The PRINT @ statement

line number PRINT @ screen address, value, punctuation, value.

The screen address is in the range 0-51 1 and refers to a position on the text screen:
screen address - column no. + J2•row no.

O to 31 O to 1 5

You would normally end a PRINT ® statement with a semicolon:

10 PRINT@43 , CHR$ (2 07) ;

Refer to Appendix Section 1 3 for text screen graphics.

The PRINT USING statement

line number PRINT USING image; value, value, value, .

The image is a character string - constant, variable or expression - which gives a specification
for the fields that the values are printed in. Described at length in Chapter 22.

12 Functions and subroutines

(a) Functions (Chapter 20)
You can define a one line function

line number DEF FNxx(variable) - expression

182 Appendix

where xx is any ordinary variable name allowed by BASIC, e.g. FNA, FNRO, FNZ7.

When a program uses a function, the expression on the right hand side is evaluated using the given
value of the function variable, but using the true values of any other variables. A given function
name can only be defined once, and must be defined before it is used. Functions may use other
functions if they were defined earlier.

(b) Subroutines (Chapter 21)
Subroutines are called by the GOSUB statement:

line number a GOSUB line number b
orby

line number a ON expression GOSUB line number b . .

The program jumps to the subroutine at line number b (or other in the ON . . . GOSUB version)
and executes it until a RETURN is given. It then resumes execution at the line after line
number a.

Subroutines can call other subroutines, but should not set up an endless loop of calls.

Subroutines are ended by the RETURN statement:

line number RETURN

The running program returns 10 the line following the latest GOSUB.

13 TheTexl Screen

The text screen of the DRAGON Computer contains 16 lines numbered 0-15 and 32 columns numbered
0-31.

The colours available on the text screen are
0 Black
I Green
2 Yellow
3 Blue
4 Rod

'Buff - looks white to me
Cyan
Magenta
Orange

The PRINT statement in all its forms uses the text screen. Graphics on the screen can be organized with
the fol1owing statcmen1s:

(a) line number PRINT@ screen address, information

The screen address is in the range 0-51 1 and is
screen address - column no. + J2•row no.

O to 31 O to 15

The CHRS function can be used to place graphics shapes on the text screen:

PRINT @ screen address, CHRS(code}

The codes arc tabulated in Appendix Section 15, and include all the various symbols and
characters available in the computer. Some of these are graphics symbols, as follows. The basic
codes arc:

Know your DRAGON

I 4 .. II

� 5 I] II!
" 6 � 10 [I
� 7 � 1 1 �

All the shapes are some colour and black. To produce a coloured shape, add on:

128 + symbol number + (colour number-1)*16

Therefore codes 128 to 143 are green
144 to 159 are yellow
160 to 175 are blue
176 to 191 are red
192 to 207 are 'buff
208 to 223 are cyan
224to239 are magenta
240to 255 are orange

(b) line number SET (column no., row no., colour no.)
0 to 63 0 to 31

183

12 ..
13 al
14 [ii
15 D

This statement subdivides the 32x16 text screen so that each screen location is 4 subunits, hence
the different row and column numbers. It sets a subcell to a colour. However only one colour and
black are available in a screen position. For example Screen location 0, which is text column 0,
row 0, contains four positions in the SET statement: (0,0), (0,1), (l ,0), (l ,l). These four must be
the same colour or black. There are illustrations of this in Chapter 12.

(c) CLS Colour
Clears the text screen to colour no. 'colour'

14 The Graphics Screen

When the computer is turned on, or whenever you use a PRINT statement the text screen is displayed on
the television. The graphics screen can be selected using the SCREEN statement

line number SCREEN screen, colour set

where 'screen'-0 for the text screen, I for the graphics screen. The 'colour set' selects a set of colours
which depends on the graphics mode set in the PMODE statement.

The resolution and memory position of the graphics screen is selected by the PM ODE statement:

line number PMODE resolution, page

where 'resolution' selects the resolution and 'page' selects an area of memory to be used for the screen.

The combinations available are:

184

Resolution
ood,

Resolution on
graphics screen
columns x rows

128x96

128x96

128xi92

128xl92

256x192

Colours
set 0

0,2,4,6,8-black
l,3,5,7=green

0,4,S=red
1,5-green
2,6=yellow
3,7-blue

0,2,4,6,8-black
1,3,5,7-green

0,4,8-red
1,5-=green
2,6=yellow
3,7=bluc

0,2,4,6,8-black
1,3,5,7-=green

Colours "'"
0,2,4,6,8-black
1,3,5,7-=buff

0,4,8-orange
1,5-buff
2,6=cyan
3,7-magenta

0,2,4,6,8-black
l,3,5,7=buff

0,4,8-orange
1,5-buff
2,6=cyan
3,7=magenta

0,2,4,6,8-black
1,3,5,7-buff

Appendix

The PSET statement always refers to columns 0-255 and rows 0-191, regardless of the resolution in use:

line number PSET (column, row, colour)
0 to 255 0 to 191 0 to 8

The following statements are used with graphics on the graphics screen:
CIRCLE draw a circle (Chapter 14)
COLOR set foreground and background colours (Chapter 13)
ORA W sophisticated string driven line drawer (Chapter 23)
GET save picture in array (Chapter 24)
LINE draw a line (Chapter 14)
PAINT colour in an area (Chapter 15)
PCLEAR reserve memory for graphics (Chapter 15)
PCLS clear screen to a colour (Chapter 13)
PCOPY copy memory pages (Chapter 15)
PMODE select resolution and memory page (Chapter 13)
PRESET turn off graphics blob (Chapter 13)
PSET turn on graphics blob (Chapter 13)
PUT put picture from array to screen (Chapter 24)
SCREEN select screen and colour set (Chapter 13)

IS Character Codes

Symbols and characters are stored as codes in the memory of the DRAGON Computer, each occupying
one byte. Here is a table of the codes that can be used on the text screen - except that on the screen
lower case letters are shown as upper case in reverse video (green or black). If you want to use upper and
lower case, press SHIFT and O and then all the letter keys will work in upper and lower case.

The symbol corresponding to a code can be obtained as CHR$(code)
The code corresp:rnding to a symbol is ASCII(symbol)

Codes 0-3 l are not much used:
3 is 'Break'
S is -

l0 is 'New line'
9 is,

1 3 is 'enter'
I O is T 21 is,.

Know your DRAGON 185

None of these will print anything.

All the codes from 96 to 127 arc lower case versions of the codes 64-95.

Code Symbol Code Symbol Code Symbol Code Symbol
32 SPACE 56 8 80 p 104 h
33 ' 57 9 8 1 Q 105
34 58 82 R 106
35 I 59 83 s 107
36 ' 60 < 84 T 108
37 % 61 85 u 109 m
38 & 62 > 86 V 110 "
39 63 ? 87 w I l l
40 64 @ 88 X 1 12
41 65 A 89 y l lJ
42 66 B 90 z 1 14
43 + 67 C 91 I 1 1 5
44 68 D 92 \ 1 16
45 69 E 93 J 1 1 7
46 70 F 94 1 1 18
47 71 G 95 1 19
48 72 H 96 @ 120
49 73 I 97 121
50 74 J 98 122
51 75 K 99 123 [
52 76 L 100 124 \
53 77 M IOI 125 J
54 78 N 102 126 1
55 79 0 103 127

Codes 128 to 255 represent coloured graphics symbols for the text screen. Refer to Appendix Section 13.

16 Sounds and Music

The DRAGON computer contains a tone generator, accessed by the SOUND statement.

line number SOUND (tone, duration) (Chapter 10)
I to255 I to255

The musical notes obtained by these tones are not exactly in tune, and are:

Note Bottom Middle High Higher Top
Octave Octave Octave Octave Notes

C 89 176 218 239
Cl 99 180 221 241
D 108 185 223 242
DI 1 1 7 189 225 243
E 125 193 227 244
F 5 133 197 229
FI 19 140 200 231
G 32 147 204 232
GI 45 153 207 234
A 58 159 210 236
A/ 69 165 213 237
B 78 170 216 238

186 Appendix

Music is generated by the PLAY statement which can control volume and tempo more gradually - refer
to Chapter 23.

17 Error Messages

The following error messages may appear when you run a program -correct the error (not always easy)
and run the program again. A message will be similar to

?SN ERROR IN 50

which tells you that the error whose code is SN occured in line 50.

Error Code
/0
AO
BS
CN
DD
DN
DS
FC
FD
FM
ID
IE
10

LS

NF
NO
OD
OM
OS
ov
RG
SN

ST
TM
UL

Meaning
You tried to divide a value by zero.
You tried to OPEN a file that was already OPEN.
You tried to use a subscript too large for the array.
Sorry, program can't CONT.
You already D!Med an array in this DIM statement.
No such device number in an Input/Output statement.
Computer is loading a program and found a direct statement - ie no line no.
111egal function call - the argument is out of range, eg RND(0) isn't allowed.
You tried to read a number from a file and the computer found a string (or vice versa).
You tried to INPUT from a file opened for output (or vice versa).
This statement (INPUT or DEF FN) can't be used in direct mode.
You've tried to read data past the end of the file.
Input/Output Error. Computer can't understand the data - you may have started in the
middle of a record or the tape or disc may be bad. If you're doing CLOAD or SKIPF, try
agam.
A string is too long. Strings can only be 255 characters. Too much concatenation can
cause this.
There wasn't a FOR statement for this NEXT, or your NEXT is out of order.
Sorry, can't use this file until you OPEN it.
Out of data - you have tried to READ more items than your DATA list contains.
Out of memory - you've used it all up. Try to use less for graphics (ie PCLEAR I or 2).
Out of string space. Use CLEAR to reserve more.
Overflow. A value is too big for the computer.
You said RETURN, but there wasn't a GOSUB, sir!
Syntax error. Your statement is wrong - spelling, punctuation, wrong number of
brackets or whatever.
This string operation is too complicated.
Type mismatch. You have tried to use a number where a string is wanted or vice versa.
You asked the computer to GOTO or GOSUB or IF . . . THEN to a line number that isn't
there.

Know your DRAGON

Index

ABS 42 43
adding up 31 50
addition l 5
address text scrcen 77

graphics screen 90
alphabctica! ordcr 148
AND 38
animation 109 132

with GET and PUT 168
argument of function 132 137
arithmctic 3 1 5

brackets in 1 9
expressions l 8
priority o f 18

arrays l 1 7
two dimensions 165

art modern 1 1 3
ASC 148
assignmcnt statement 26

with strings 142
ATN 13 !

Baa Baa Black Sheep 65
Bach 70
background colour 97
ball bouncing 9 1 101 109 132
banana warmers 3048
bank balance 3 !
Bee and Bomb l ! 4
Beethoven 1 5 5
bells play o n keyboard 1 5 0

Westminster 124 139 l 5 2
binary 135 1 7 0
Bogart Humphrey 1 5 0
Bomb and Bee 1 14
bouncing 91 109 132
brackets in arithmetic 1 9
Brahms lullaby 160
BREAK 29
breathing hcavy 102
bubblesort \27
budget family 166

Calculator 20
Canada 106
canaries 1 6
canon l54
cchlmes westminster !24
character strings 140
chimes Westminster 124 139 152

chiming clock 151
CHR 148
Christmas, Twelve Days of 50
CIRCLE 99
circlc areas function l34
CLEAR 85
clear screen see PCLS or CLS
CLOAD 59
clock l 5 1
CLS 7 9
colon between statemcnts 50
COLOR 94 97
colour foreground background 97

numbers of 76 80
sets 88

COLOUR statement is spelled COLOR
combinations 56
comma in PRINT 22 72
commands 5
comparisons 35
concatenationstrings 142
CONT 29
converting units46
cos 130
counting36
Covct!, Stevastian 19
CSA YE 60
cursor 7

DATA 65
with strings 143

debugging 53
decimal-binary conversion 136
decisions 35
DEF FN 132
DEL 23
dcleting lines 6
dice l20 1 34
DIM 1 2 1

two dimensions 1 6 5
with strings 143

direct expressions 20
division l 6
Doppler effect 64
DRAW graphics screen 160
duration in SOUND 62

EDIT S
editing line 5

screen 7
END 3 15
ENTER key 4
EXP 129
explosion l\6 140
expressions arithmetic 18

direct 20
relational 35

strings 142

Factorials 52 55
Fibonacci 33
filcs skipping on tapc 60
Fiona of Troy 7 1
fireworks 140
FIX 42
nag British 105

Scotland 78
USA93 98

FOR NEXT 49
rules 56

foreground colour97
functions 42

mathematical 128
user defined l32

GET 168
GO TO 29 abuse of 40
GOSUB 138
grams to ounces 37
graphics resolution 88 92

screen 88 90

187

memory \07
symbols text screen 74

graphics with DRAW 160
graphs of functions 128

Heavy breathing 102
HEXS 150
hexadecimal code 170
histogram 120
hornpipc 68
hypotenuse 43

IF . THEN ELSE 35 37
with strings 143

indexing hook 148
INKEYS 149
INPUT23
INPUT prompt in 25
INPUT prompt message in 32
INPUT with strings 142
inserting lincs 6
inscrtion sort 127
INSTR 149
INT42 44
intercst 2028

Kaleidoscope 80 1 1 4
kilograms t o pounds 27
kilometrcs to m ilcs etc46

Large numbers 34
LEFT$!49
LEN 149

188

LET 26 27
LINE 97
linc dclction 6
LINE INPUT 145

inscrtion 6
number 3
eplaccmcnt 5
several sta1cmcnts on 50

lincs graphics 96
LIST 4
lists 1 1 7

memory 123
searching 1 19

listssort shufne 126
loading from tape 59
LOG 129
loops 49-56

Marathon man 170
MEM ! 22
memory 107
memory PCLEAR and lists 123
mcssages 21
MIDS 144 149
miles from kilometres 46
modern art l 13
multiplication !6
multiplying up52
music for four DRAGONS 154

random 1 1 3
using PLAY 153

music with SOUND 65

Names of variables 26
nested loops 53
Neutron Bomb l l4
NEW23
Newton Isaac IOI 132
NEXT 49
NOTJ8

notation scientific 34
numbcrscolour 7680
numbers large 34

ON . . . GOT0 4l
OR38
order of operations in arithmetic 15
ounces to grams 37

PAINT 105
PCLEAR 109 123
PCLS 91 99
PCOPY and animation l l 1
pear tree, partridge in 50
permutations 55
pitch in SOUND 62
PLAY 153

PMOOE 91 !08
POINT 87
POS 73
pounds to kilograms 27
powers 17
PPOINT 107
PRESET 93
primc numbers 54
PRINT 3 7 1

commas in 22 72
messages in 21 72
semicolon in 72
with strings 142

PRINT USING 145
PRINT@ 77

semicolon in 78
PRINT@ . . . USING 147
priority in arithmetic 18
prisoncrs l 1 8 125
prompt in INPUT 25 32
PSET 90

Queen Fiona 73 75
quotation marks 22

Rabbits 33
random numbers 1 1 2
REA066

with strings 143
recorder tape 58
recurrence 32
relational e11pressions 35
REM 22
remainders 48
RENUM 23
repcating programs 29
replacing lines 5
RESET 83 87
resolution graphics 88 92 108
RESTORE 67
RETURN 138
RIGHT$ 149
RND 1 1 2
rolling 1 0 1 109
rounding 44

function for 134
RUN 7
runner 170

Saving on tape 60
scaling random numbers 1 1 2
scientific notation 34
SCREEN 88
screen editing 7
screen sec tc111 or graphics
searching list 1 1 9
sclf-replacement30

semicolon in PRINT 72
in PRINT@ 78

SET 83
SGN 42 44
shape of circle 102
shufning 125
SIN 130
SKIPF 60
skipping files on tape 60
snai1 32 36
sorting 125

strings 148
SOUND62

music with 65
spiral 86 1 16
spiral subroutine 140
SQR 42 43
star spangled banncr 93 98
statcmentassignmcnt 26

with strings 142
statcments ononeline50
STEP 51
stopping programs 29
STRS 150
strings \4!
subroutines 138
subscripts 1 17

two dimensions 165
subtraction 1 5
summation 3 1 50

Index

symbols graphic te11t screen 74

TAB 73
tables l65
TAN 130
tape 58
te11t screen 77 88
TIMER 152
toothpaste 37
traces 53
Transylvania the Hideous 95
TROFF 54
TRON 54
Troy Fiona of71
truncation 46
tune program to play 68
Twelve Days of Christmas 50

Union Jack 105
units converting 46

VAL !49
variables 26
variables character strings 141
Vivaldi 69

Westminster Chimes 124 139 152

	lc-n001
	lc-n002
	lc-n003
	lc-n004
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	lc-p152
	lc-p153
	lc-p154
	lc-p155
	lc-p156
	lc-p157
	lc-p158
	lc-p159
	lc-p160
	lc-p161
	lc-p162
	lc-p163
	lc-p164
	lc-p165
	lc-p166
	lc-p167
	lc-p168
	lc-p169
	lc-p170
	lc-p171
	lc-p172
	lc-p173
	lc-p174
	lc-p175
	lc-p176
	lc-p177
	lc-p178
	lc-p179
	lc-p180
	lc-p181
	lc-p182
	lc-p183
	lc-p184
	lc-p185
	lc-p186
	lc-p187
	lc-p188

